Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Respiration Physiology 7 (1969), S. 271-277 
    ISSN: 0034-5687
    Keywords: 2,3 diphosphoglycerate ; Adenosine triphosphate ; Adult haemoglobin ; Carbonic anhydrase ; Foetal haemoglobin ; Oxygen affinity ; Oxygen half saturation pressure ; Red cell potassium ; Red cell sodium
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Respiration Physiology 15 (1972), S. 151-158 
    ISSN: 0034-5687
    Keywords: 2,3 diphosphoglycerate ; Blood ; Foetal haemoglobin ; Lambs ; Oxygen affinity
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Isolated perfused kidney ; Radioimmunoassay ; Hypoxia ; Renal oxygen sensing ; cAMP ; cGMP ; Calmodulin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In this study we have investigated the role of oxygen delivery and of classic second messengers on erythropoietin production by the isolated perfused rat kidney. We found that the rat kidney was capable of de novo synthesis of erythropoietin. The erythropoietin production rate was inversely related to the oxygen pressure in the perfusate and increased from 0.17 to 1.85 U erythropoietin h−1 g kidney−1 when arterial PO2 was lowered from 500 mmHg to 30 mmHg. Addition of forskolin (10 μM) and 8-bromo-cGMP (100 μM) to the perfusate elicited significant effects on the renal vascular resistance, but had no significant effect on erythropoietin production. Hypoxia-induced erythropoietin formation, however, was blocked by calmidazolium (1 μM) and W-7 (10 μM), two structurally different putative calmodulin antagonists. Calmidazolium and W-7 had no effect on other functional parameters of the isolated perfused rat kidney such as flow rate, glomerular filtration rate or sodium reabsorption. Our findings suggest that the oxygen-sensing mechanism that controls renal erythropoietin production is primarily located in the kidney itself. A calcium/calmodulin-dependent cellular reaction could be involved in the signal transduction process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 396 (1983), S. 174-175 
    ISSN: 1432-2013
    Keywords: Erythropoietin ; Erythropoiesis ; Hypoxia ; Nutrition ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to test the hypothesis that the early cessation of erythropoietin (Ep) production during hypobaric hypoxia is induced by lowered food intake, we have compared the plasma Ep titer of rats after exposure to continuous hypoxia (42.6 kPa 2259 700 m altitude) for 4 days with that in fed or fasted rats after exposure to discontinuous hypoxia. We found that plasma Ep was rather low after 4 days of continuous hypoxia. However, the Ep titer significantly rose again, when rats were maintained normoxic for 18 h and then exposed to repeated hypoxia for 6 h. Because this was also found in rats which were deprived of food during the normoxic interval and the second hypoxic period, we conclude that the fall of the Ep titer during continuous hypoxia is not primarily due to reduced food intake. In addition, our findings show that fasting per se lowers the Ep-response to hypoxia in normal rats but not exhypoxic rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 46 (1990), S. 1197-1201 
    ISSN: 1420-9071
    Keywords: Hypoxia ; oxygen sensing ; erythropoietin ; isolated kidneys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The glycoprotein hormone erythropoietin (EPO) counteracts tissue hypoxia by increasing the systemic oxygen-carrying capacity. It induces augmentation of red blood cell mass by stimulating the formation and differentiation of erythroid precursor cells in the bone marrow. EPO production is increased under various forms of diminished oxygen supply such as anemic or hypoxic hypoxia. In the adult organism, the kidneys are the major source of EPO. The precise nature of the cells responsible for renal EPO production, however, has not yet been elucidated. Most likely, peritubular cortical cells, e.g. interstitial or endothelial cells, are involved in the elaboration of the hormone. From the observation that isolated perfused rat kidneys produce EPO in an oxygen-dependent fashion we conclude that the ‘oxygen sensor’ that controls hypoxia-induced EPO synthesis is located in the kidney itself. Within the kidneys, the local venous oxygen tension which reflects the ratio of oxygen supply to oxygen consumption is measured and transformed into a signal that regulates the formation of EPO. However, the mechanism by which a decrease of oxygen delivery to the kidneys is linked to an enhanced EPO gene expression is not yet known. Two possible mechanisms of regulation are discussed: First, renal hypoxia could lead to enhanced formation of metabolic mediators, for example prostaglandins or adenosine, which might stimulate EPO gene transcription by increasing cellular levels of second messenger molecules. Second, some kind of molecular ‘oxygen receptor’ such as a heme protein, that controls EPO formation by an oxygen-dependent conformational change, could mediate signal transduction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...