Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
  • Cell & Developmental Biology  (2)
  • Inferior colliculus  (1)
  • 1
    ISSN: 1432-1106
    Keywords: Tuberomammillary nucleus ; Histaminergic system ; E groups ; Efferent projection ; Medial preoptic area ; Inferior colliculus ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The efferent projections of the five histaminergic neuronal subgroups in the tuberomammillary nucleus to the medial preoptic area (MPO) and inferior colliculus (IC) were examined by immunocytochemistry with antihistidine decarboxylase (HDC) antibodies combined with retrograde axonal tracing with Fast Blue (FB). The term “E groups” were used for the histaminergic neuronal subgroups. About 10% of the HDC-immunoreactive (HDCI) neurons were retrogradely labeled after FB injection into the MPO. The labeled neurons were not concentrated in any particular area, but were diffusely distributed bilaterally in all the subgroups. About two-thirds of the labeled neurons were observed on the side ipsilateral to the injection site and one-third on the contralateral side. The percentages of labeled neurons (double-labeled neurons/HDCI neurons) in the five subgroups were not significantly different with each other. The percentages in group E1 and E2 were particularly close, while that in group E4 resembled that in group E5. About 4% of the HDCI neurons were retrogradely labeled after the dye injections into the IC, and about half of the labeled neurons were detected on the ipsilateral side. The percentage of the double-labeled neurons in the five groups were not significantly different. Furthermore, those in E1 and E2, and in E4 and E5 were almost identical, respectively, to the situation following injection of FB into the MPO. These results indicate that each subgroup of histaminergic neurons in the tuberomammillary nucleus has similar efferent projections to the MPO and IC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 161 (1994), S. 597-605 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The cytotoxic effects of TNF on malignant cells are known to be mediated through high affinity surface receptors. The precise mechanism by which transformed cells are selectively killed by the activation of these receptors is yet unknown, but several intracellular signaling pathways are known to be involved. Phospholipase A2 activation by TNF-α has been shown to be important in the transduction of signals leading to cell death. We have used monitoring of extracellular acidification rate as a measure of cellular metabolism to follow the early time course of TNF effects on a human leukemic T cell line (CEM-SS cells). CEM-SS cells were relatively resistant to TNF cell killing but TNF caused an early stimulation of metabolism within 2-4 hr, followed by a suppression of metabolic activity occurring over 20 hr. In contrast, a TNF sensitive subclone of CEM cells (C1Ca) showed a rapid and dramatic decrease in metabolic activity corresponding to cytotoxicity within 18 hr. It was discovered that cupric o-phenanthroline markedly potentiated the effects of TNF on the resistant CEM-SS cells leading to cell death. This observation was specific for copper because ferric o-phenanthroline was without effect at the same concentration. The copper cytotoxic effect was shown to be mediated through the TNF-R1 receptor and independent of phospholipase A2 signaling. © 1994 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The extracellular acidification rate of the human bone marrow cell line, TF-1, increases rapidly in response to a bolus of recombinant granulocyte-macrophage colony stimulating factor (GM-CSF). Extracellular acidification rates were measured using a silicon microphysiometer. This instrument contains micro-flow chambers equipped with potentiometric sensors to monitor pH. The cells are immobilized in a fibrin clot sandwiched between two porous polycarbonate membranes. The membranes are part of a disposable plastic “cell capsule” that fits into the microphysiometer flow chamber. The GM-CSF activated acidification burst is dose dependent and can be neutralized by pretreating the cytokine with anti-GM-CSF antibody. The acidification burst can be resolved kinetically into at least two components. A rapid component of the burst is due to activation of the sodium/proton antiporter as evidenced by its elimination in sodium-free medium and in the presence of amiloride. A slower component of the GM-CSF response is a consequence of increased glycolytic metabolism as demonstrated by its dependence on D-glucose as a medium nutrient. Okadaic acid (a phospho-serine/threonine phosphatase inhibitor), phorbol 12-myristate 13-acetate (PMA, a protein kinase C (PKC) activator), and ionmycin (a calcium ionophore) all produce metabolic bursts in TF-1 cells similar to the GM-CSF response. Pretreatment of TF-1 cells with PMA for 18 h resulted in loss of the GM-CSF acidification response. Although this treatment is reported to destroy protein kinase activity, we demonstrate here that it also down-regulates expression of high-affinity GM-CSF receptors on the surface of TF-1 cells. In addition, GM-CSF driven TF-1 cell proliferation was decreased after the 18 h PMA treatment. Short-term treatment with PMA (1-2h) again resulted in loss of the GM-CSF acidification response, but without a decrease in expression of high-affinity GM-CSF receptors. Evidence for involvement of PKC in GM-CSF signal transduction was obtained using calphostin C, a specific inhibitor of PKC, which inhibited the GM-CSF metabolic burst at a subtoxic concentration. Genistein and herbimycin A, tyrosine kinase inhibitors, both inhibited the GM-CSF response of TF-1 cells, but only at levels high enough to also inhibit stimulation by PMA. These results indicate that GM-CSF activated extracellular acidification of TF-1 cells is caused by increases in sodium/proton antiporter activity and glycolysis, through protein kinase signalling pathways which can be both activated and down-regulated by PMA. © 1993 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...