Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Calbindin ; Enteric nervous system ; Intestine, small ; Sensory neurons ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distribution of nerve cells with immunoreactivity for the calcium-binding protein, calbindin, has been studied in the small intestine of the guinea-pig, and the projections of these neurons have been analysed by tracing their processes and by examining the consequences of nerve lesions. The immunoreactive neurons were numerous in the myenteric ganglia; there were 3500±100 reactive nerve cells per cm2 of undistended intestine, which is 30% of all nerve cells. In contrast, reactive nerve cells were extremely rare in submucous ganglia. The myenteric nerve cells were oval in outline and gave rise to several long processes; this morphology corresponds to Dogiel's type-II classification. Processes from the cell bodies were traced through the circular muscle in perforating nerve fibre bundles. Other processes ran circumferentially in the myenteric plexus. Removal of the myenteric plexus, allowing time for subsequent fibre degeneration, showed that reactive nerve fibres in the submucous ganglia and mucosa came from the myenteric cell bodies. Operations to sever longitudinal or circumferential pathways in the myenteric plexus indicated that most reactive nerve terminals in myenteric ganglia arise from myenteric cell bodies whose processes run circumferentially for 1.5 mm, on average. It is deduced that the calbindin-reactive neurons are multipolar sensory neurons, with the sensitive processes in the mucosa and with other processes innervating neurons of the myenteric plexus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Intestine, small ; Neurons, types ; Myenteric plexus ; Intracellular dye injection (Lucifer yellow) ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The shapes of myenteric neurons in the guineapig small intestine were determined after injecting living neurons with the dye Lucifer yellow via a microelectrode. The cells were fixed and the distribution of Lucifer yellow rendered permanent by an immunohistochemical method. Each of 204 nerve cells was examined in whole-mount preparations of the myenteric plexus and drawn using a camera lucida at 1250 x magnification. Four cell shapes were distinguished: (1) neurons with several long processes corresponding to type II of Dogiel; (2) neurons with a single long process and lamellar dendrites corresponding to type I of Dogiel; (3) neurons with numerous filamentous dendrites; and (4) small neurons with few processes. About 15% of the neurons could not be placed into these classes or into any single class. The type II neurons (39% of the sample) had generally smooth somata and up to 7 (average 3.3) long processes, most of which ran circumferentially. Dogiel type I neurons (34% of sampled neurons) had characteristic lamellar dendrites, i.e., broad dendrites that were flattened in the plane of the plexus. The filamentous neurons (7% of the sample), had, on average, 14 fine processes up to about 50 μm in length. Small neurons with smooth outlines and a few fine processes made up 5% of the neurons encountered. We conclude that myenteric neurons that have been injected with dye can be separated into morphologically distinct classes and that the different morphological classes probably correspond to different functional groupings of neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Aminobutyric acid ; Enteric nervous system ; Intestine, small ; Neurotransmitters ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distribution of nerve cell bodies and fibres with immunoreactivity for γ-aminobutyric acid (GABA) has been studied in the guinea-pig small intestine. Cell bodies were common in myenteric ganglia but were extremely rare in the submucosa. Reactive fibres were numerous in the tertiary component of the myenteric plexus and in the circular muscle but they were rare in both myenteric and submucous ganglia. Reactive nerve fibres were absent from the mucosa. This distribution conforms to previous descriptions. Exposure to exogenous GABA, in vitro, was used to supplement endogenous stores of GABA. The morphology of cell bodies was better defined after this treatment. Nearly all cell bodies had type-I morphology, i.e., the cells had numerous short lamellar dendrites and one axon. Most axons ran anally. Some could be traced to the tertiary component of the myenteric plexus, others to the circular muscle. Removal of the myenteric plexus from a short length of intestine caused a loss of nerve fibres from the circular muscle beneath the site of operation and a decrease in fibre density in the circular muscle that extended anally from the lesion for about 1 mm. The nerve lesions caused no significant changes in the tertiary plexus. It is concluded that GABA is contained in motor neurons supplying the longitudinal and circular muscle, and that the neurons supplying the circular muscle may be inhibitory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: Myenteric plexus ; Enteric nervous system ; Intestine, small ; Ultrastructure ; Innervation, of intestinal muscle ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The tertiary component of the myenteric plexus consists of interlacing fine nerve fibre bundles that run between its principal ganglia and connecting nerve strands. It was revealed by zinc iodide-osmium impregnation and substance P immunohistochemistry at the light-microscope level. The plexus was situated against the inner face of the longitudinal muscle and was present along the length of the small intestine at a density that did not vary markedly from proximal to distal. Nerve bundles did not appear to be present in the longitudinal muscle as judged by light microscopy, although numberous fibre bundles were encountered within the circular muscle layer. At the ultrastructural level, nerve fibre bundles of the tertiary plexus were found in grooves formed by the innermost layer of longitudinal smooth muscle cells. In the distal parts of the small intestine, some of these nerve fibre bundles occasionally penetrated the longitudinal muscle coat. Vesiculated profiles in nerve fibre bundles of the tertiary plexus contained variable proportions of small clear and large granular vesicles; they often approached to within 50–200 nm of the longitudinal smooth muscle cells. Fibroblast-like cells lay between strands of the tertiary plexus and the circular muscle but were never intercalated between nerve fibre varicosities and the longitudinal muscle. These anatomical relationships are consistent with the tertiary plexus being the major site of neurotransmission to the longitudinal muscle of the guinea-pig small intestine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...