Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Digitale Medien  (9)
  • Iodine Labelling  (5)
  • Botulinum A toxin  (4)
Materialart
  • Digitale Medien  (9)
Erscheinungszeitraum
  • 1
    ISSN: 0014-5793
    Schlagwort(e): Botulinum A toxin ; Chain, heavy ; Chain, light ; Chromaffin cell, permeabilized ; Exocytosis
    Quelle: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Thema: Biologie , Chemie und Pharmazie , Physik
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 276 (1973), S. 327-340 
    ISSN: 1432-1912
    Schlagwort(e): Tetanus Toxin ; Pharmacokinetics ; Central Nervous System ; Iodine Labelling ; Receptors
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary In order to understand the symptomatology of generalized tetanus from the pharmacokinetics of the toxin, 125I-labelled toxin was injected i.v. in rats without and with antitoxin. 1. After a few hours latency, brain stem and spinal cord concentrate radioactive material up to the third day. The decline of radioactivity is very slow, semilogarithmic, and can be followed up to the 24th day after injection. In contrast, forebrain and cerebellum do not bind measurable radioactivity. Less than 1% of the radioactivity injected is found in the CNS. 2. The symptoms of tetanus start some time after the bulk of labelled toxin has been taken up by the CNS. They cease before all radioactivity has left it. 3. Antitoxin, given simultaneously, prevents the onset of symptoms and the uptake of radioactivity by the CNS. When given 10 h after labelled toxin, it nearly abolishes the fixation and still prevents the onset of symptoms. When given 48 h after toxin, it is nearly ineffective in both respects. Antitoxin first delays, then enhances the elimination of labelled toxin from the blood. 4. Labelled antitoxin is not enriched in the CNS. 5. The uptake of radioactivity into various parts of spinal cord corresponds well to their relative content in grey matter. 6. The pharmacokinetic behaviour of 125I-toxoid resembles that of toxin. However, in order to get measurable fixation to the CNS at least 50 times higher amounts are to be applied. It is concluded that the barrier between blood and CNS is practically impermeable to tetanus toxin. The results can be harmonized best with the assumption that generalized tetanus is nothing else than a multiple local tetanus.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 316 (1981), S. 135-142 
    ISSN: 1432-1912
    Schlagwort(e): Tetanus toxin ; Botulinum A toxin ; Choline ; Gangliosides ; Fixation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Tetanus toxin and, to a lesser degree, botulinum A toxin inhibit partially and noncompetitively the uptake of [3H]choline into a crude synaptosomal fraction from rat brain cortex. Botulinum toxin acts by its neurotoxin content. The effect is not due to nonspecific synaptosomal damage by the toxins as shown by the lactate dehydrogenase occlusion test, by the absence of swelling and by the preservation of choline stores. The ratio between [3H]acetylcholine and [3H]choline was decreased by both toxins. Inhibition by either toxin depends strongly on the temperature and duration of incubation, and is preceded by an initial latency period. The effect of tetanus toxin, once manifest, is largely resistant against antitoxin. It is not significantly diminished by pretreatment of the synaptosomes with V. cholerae neuraminidase. Fixation of 125I-tetanus toxin proceeds fast, is largely independent of temperature and is diminished by pretreatment of the synaptosomes with neuraminidase. Thus only some of the fixation sites, and not the long-chain gangliosides, are required for the effects of tetanus toxin. A slow, temperature-sensitive process links the fixation with the action. In contrast to rat synaptosomes the chicken preparation is more sensitive to botulinum A than to tetanus toxin, which reflects the differences in sensitivity between live birds and rodents. Our data underline the similarities between the effects of tetanus and those of botulinum A toxin. Their dependence on time and temperature, the time dependence of efficacy of antitoxin, and the concordance in species specificity indicate that the in vitro system mirros some crucial features of poisoning of isolated organs and live animals.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 318 (1981), S. 105-111 
    ISSN: 1432-1912
    Schlagwort(e): Tetanus toxin ; Botulinum A toxin ; Noradrenaline outflow ; Gangliosides
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Tetanus toxin and, to a lesser degree, botulinum A toxin partially depress the basal and the potassium evoked outflow of [3H]noradrenaline from preloaded particulate rat forebrain cortex. The effect is due to the toxins and not to any contaminant, as shown by dialysis, heating and antitoxin treatment, and also by replacement of crystalline botulinum A toxin with purified neurotoxin. Tetanus toxin also depresses the outflow due to sea anemone toxin II, 4-aminopyridine and d-amphetamine. The effect of the toxins proceeds with time and strongly depends on temperature. Once manifest the tetanus toxin effect is not reversed by antitoxin. Pretreatment with V. cholerae neuraminidase degrades the long-chain gangliosides quantitatively to GM1. Tetanus toxin, applied subsequently remains fully active. High concentrations of tetanus toxin and botulinum A neurotoxin promote the outflow of small amounts of tritium within short incubation times. It is concluded: a) Tetanus toxin is a broad range neurotoxin which acts on processes subsequent to the depolarization step. b) Long-chain gangliosides are only binding sites, but not receptors of tetanus toxin. c) Botulinum A toxin is less potent but resembles tetanus toxin in both promoting and depressing the outflow of noradrenaline.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 276 (1973), S. 341-359 
    ISSN: 1432-1912
    Schlagwort(e): Tetanus Toxin ; Iodine Labelling ; Central Nervous System ; Receptors ; Antitoxin
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. Lyophilized homogenate of rat brain binds 125I-labelled tetanus toxin better than does homogenate from spinal cord. This is in contrast to the in vivo behaviour of the toxin where it is bound only to spinal cord. Liver homogenate does not fix the toxin. 2. Autoradiography of preincubated slices from spinal cord shows that the radioactivity is evenly and nearly exclusively bound to gray matter. 3. Maximally 40% of the labelled material interacts with brain homogenate. The toxicity of the remaining supernatant is much more reduced than is its radio-activity. 125I-toxoid, prepared from labelled toxin by treatment with formol, is bound only very weakly. Thus we assume that our toxin preparation is already partially toxoided, and that binding to CNS matter bears some relevance to toxicity. 4. The fixation of the labelled toxin is reversible. The degree of reversibility depends on the conditions used. Binding can be nearly completely reversed or prevented by treatment with antitoxin, but not more than 50% of the binding is reversed by treatment with unlabelled toxin. Repeated washings also remove the bulk of the initially bound toxin. Thus binding sites with different affinities are to be assumed. 5. A complex between ganglioside and cerebroside binds the labelled toxin more firmly than does brain homogenate. No competition between unlabelled and labelled toxin has been observed for this solid phase. Antitoxin nearly completely prevents and largely reverses the fixation of labelled toxin. 6. On the basis of the selective, competitive reactivity of labelled and unlabelled tetanus toxin with brain matter, a radio receptor assay has been developed. It can be used for the measurement of tetanus toxin down to 5 ng. 7. Gradient centrifugation of sucrose homogenates preincubated with labelled toxin reveals one peak of radioactivity in the fractions where the synaptosomes are to be expected; the larger part of the toxin remains, however, unevenly distributed near the starting volume. 8. Desoxycholate solubilizes the complex between labelled toxin and brain matter with parallel dissolution of brain proteins. 9. Neither brain nor spinal cord homogenates degrade labelled toxin into TCA-soluble fragments at pH 7.5. Partial degradation occurs, however, at pH 3.5.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 276 (1973), S. 361-373 
    ISSN: 1432-1912
    Schlagwort(e): Tetanus Toxin ; Iodine Labelling ; Spinal Cord ; Autoradiography ; Antitoxin
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The in vivo interaction of 125I-labelled toxin with substructures of rat spinal cord has been studied. The rats were poisoned by i.v. injection about 40–50 h before sacrifice. 1. The labelled material accumulates in the grey substance, which is, on microdissection, about 6 times more active than the white. Autoradiography reveals that the toxin is particularly enriched in the ventrolateral part of the grey substance. 2. On ultracentrifugation of the homogenates, the label is preferentially fixed to the dense fractions known to contain the synaptosomes. However, a considerable part of the toxin is fixed to the lighter fractions too. 3. Upon gel filtration, the labelled material in SDS-homogenates from spinal cords poisoned in vivo is indistinguishable from toxin added to the homogenates already prepared. The same is true for the bulk of radioactivity when subjected to disc gel electrophoresis. 4. The labelled material is degraded by enzymes from spinal cord at pH 3.5, but not at pH 7.5. 5. The labelled material is relatively firmly bound to structures of spinal cord. The bonding is fairly resistant against washing, even in the presence of an excess of cold toxin, but it can be partially released by treatment with antitoxin. According to these findings, the labelled material is firmly but not irreversibly bound in vivo to discrete structures, corresponding preferentially to the synaptosomal fractions in the homogenates and the ventrolateral grey in the slices. No evidence has been found for its degradation in vivo. So far, the bulk of labelled material in the spinal cord is indistinguishable from tetanus toxin.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 273 (1972), S. 313-330 
    ISSN: 1432-1912
    Schlagwort(e): Snake Venom ; Phospholipase A ; Potentiation ; Iodine Labelling ; Pharmacokinetics
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary In order to obtain better insight into the potentiation of the toxicity of phospholipase A by crotapotin, we studied the distribution and elimination of these substances and of their combination. Blood Plasma Concentration. Iodine-labelled phospholipase A leaves the bloodstream of mice and rabbits very quickly after i.v. application. Simultaneous injection of crotapotin speeds the elimination of the enzyme. After subcutaneous application in mice the plasma concentration of phospholipase A depends on the quantity of enzyme injected. It is higher when the enzyme is complexed with crotapotin before injection. The plasma concentration of phospholipase A fails, however, to be proportional to the toxicity of the complex after subcutaneous application. Crotapotin leaves the blood of mice also very quickly after i.v. application. Organ Distribution. After i.v. application in mice, phospholipase A is heavily enriched in the liver. By simultaneous application of crotapotin, the enzyme is partially diverted to the kidneys. Only a small percentage of injected enzyme is found in the brain. This percentage is just significantly raised by simultaneous application of crotapotin. The diaphragm contains about the twofold amount of phospholipase A per wet weight as compared with other samples of skeletal musculature. With crotapotin, there is a slight increase of the radioactivity in all muscles investigated, with different degrees of significance. Crotapotin is enriched in mouse kidneys after i.v. application. Renal Elimination. The renal elimination of the acidic crotapotin is higher than that of the basic phospholipase A. In this respect, the latter resembles the basic polypeptide Trasylol®. Doses of phospholipase A above 0.25 mg/kg cause intravital hemolysis. The hemolysis is prevented if a small amount of crotapotin is applied simultaneously. Our findings show that the combination with crotapotin distinctly alters the pharmacokinetic behaviour of Crotalus terrificus phospholipase A. However, our data do not explain the tremendous increase of phospholipase A toxicity caused by the non-toxic crotapotin.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 290 (1975), S. 329-333 
    ISSN: 1432-1912
    Schlagwort(e): Tetanus Toxin ; Iodine Labelling ; Neurones ; Tissue Culture ; Autoradiography
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Primary cultures derived from embryonic mouse brain and spinal cord were exposed to 125I-labelled tetanus toxin and subjected to autoradiography. Cells with neuronal, but not glial, morphology selectively accumulated the toxin. The distribution of the grains over these cells and their processes was not uniform, discrete processes showing heavier labelling.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    ISSN: 1432-1912
    Schlagwort(e): Tetanus toxin ; Botulinum A toxin ; Neurotransmitter ; Uptake ; Release
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The effects of tetanus toxin and botulinum A toxin on the uptake and evoked release of various neurotransmitters were studied using particles from rat forebrain, corpus striatum and spinal cord. 1. Uptake. Tetanus toxin partially inhibits the uptake of glycine and choline into spinal cord synaptosomes. The effect on glycine uptake becomes statistically significant after a lag period of 60\2-120 min. It is no longer present when the toxin is heated, antitoxin-treated or toxoided. The inhibition by botulinum A toxin of choline uptake into spinal cord synaptosomes is weak but measurable, that of glycine uptake is at the borderline of detection. The uptake of GABA into forebrain cortex synaptosomes is slightly inhibited by tetanus toxin but hardly by botulinum A toxin. The effects of tetanus toxin and botulinum A toxin on the uptake of noradrenaline into striatal synaptosomes are negligible. 2. Release. Tetanus toxin inhibits the potassium (25 mM) evoked release of radioactivity from rat forebrain cortex particles preloaded with labelled neurotransmitters. The sensitivity decreases in the following order: Glycine 〉 GABA \2〉 acetylcholine. The toxin also inhibits the release of radioactivity from striatal particles preloaded with labelled noradrenaline. It is always 10\2-50 times more potent on spinal cord than on brain particles. The sensitivity of the evoked release from the spinal cord decreases in the order glycine 〉 GABA 〉 acetylcholine 〉 noradrenaline. The toxin is identical with the causative agent because toxin-antitoxin complexes, toxoid and heated toxin do not influence the release from particles preloaded with glycine (spinal cord), GABA (forebrain) and noradrenaline (striatum). Botulinum toxin resembles tetanus toxin by its ability to diminish the release of radioactivity from preloaded forebrain (acetylcholine 〉 GABA), striatal (noradrenaline), or spinal cord (glycine) particles. The botulinum toxin effect on the striatum (noradrenaline) and on the spinal cord (glycine) is due to its neurotoxin content. The identity of the toxin and the causative agent has been established by preheating and preincubation with antitoxin. It is proposed that a) tetanus and, however to a much lesser degree, botulinum A toxin act in a basically similar manner on a process underlying the function of synapses in general, and b) the pronounced sensitivity of glycine and GABA release from spinal cord, together with the axonal ascent of tetanus toxin, may be crucial in the pathogenesis of tetanus.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...