Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3592
    Keywords: Klebsiella pneumoniae ; glycerol ; pyruvate kinase ; pyruvate:formate-lyase ; pyruvate dehydrogenase ; in vitro and in vivo activities ; dynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The activities of pyruvate kinase (PK), pyruvate: formate-lyase (PFL), pyruvate dehydrogenase (PDH), and citrate synthase (CS) involved in the anaerobic glycerol conversion by Klebsiella pneumoniae were studied in continuous culture under conditions of steady states and sustained oscillations. Both the in vitro and in vivo activities of PK, PFL, and PDH are strongly affected by the substrate concentration and its uptake rate, as is the in vitro activity of CS. The flux from phosphoenolpyruvate to pyruvate is found to be mainly regulated on a genetic level by the synthesis rate of PK, particularly at low substrate concentration and low growth rate. In contrast, the conversion of pyruvate to acetyl-CoA is mainly regulated on a metabolic level by the in vivo activities of PFL and PDH. The ratio of in vitro to in vivo activities is in the range of 1 to 1.5 for PK, 5 to 17 for PFL and 5 to 80 for PDH under the experimental conditions. The regulation of in vivo activity and synthesis of these enzymes is sensitive to fluctuations of culture conditions, leading to oscillations of both the in vitro and in vivo activities. In particular, PFL is strongly affected during oscillations; its average in vitro activity is only about half of its corresponding steady-state value under similar environmental conditions. The average in vitro activities of PDH and PK under oscillations are close to their corresponding steady-state values. In contrast to all other enzymes measured for the glycerol metabolism by K. pneumoniae PFL and PDH are more effectively in vivo utilized under oscillations than under steady state, underlining the peculiar role of pyruvate metabolism in the dynamic responses of the culture. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 617-626, 1998.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3592
    Keywords: Klebsiella pneumoniae ; glycerol dissimilation ; 1,3-propanediol ; in vitro and in vivo enzyme activities ; dynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The initial steps of glycerol dissimilation and 1,3-propanediol (1,3-PD) formation by Klebsiella pneumoniae anaerobically grown on glycerol were studied by quantifying the in vitro and in vivo activities of enzymes in continuous culture under conditions of steady state and oscillation and during transient phases. The enzymes studied included glycerol dehydrogenase (GDH), glycerol dehydratase (GDHt), and 1,3-propanediol oxidoreductase (PDOR). Three conclusions can be drawn from the steady-state results. First, glycerol concentration in the culture is a key parameter that inversely affects the in vitro activities (concentrations) of all three enzymes, but has a positive effect on their in vivo activities. Growth rate significantly affects the ratio of in vitro and in vivo enzyme activities under low glycerol concentrations, but not under glycerol excess. Second, whereas the flux through the oxidative pathway of glycerol dissimilation is governed mainly by the regulation of in vivo enzyme activity on a metabolic level, the flux through the reductive pathway is largely controlled by the synthesis of enzymes. Third, GDHt is a major rate-liming enzyme for the consumption of glycerol and the formation of 1,3-PD in K. pneumoniae at high glycerol concentrations. Results from oscillating cultures revealed that both in vitro and in vivo activities of the enzymes oscillated. The average values of the in vitro activities during an oscillation cycle agreed well with their corresponding values for nonoscillating cultures under similar environmental conditions. Experiments with step changes in the feed concentration of glycerol demonstrated that growth and product formation are very sensitive to changes of substrate concentration in the culture. This sensitivity is due to the dynamic responses of the genetic and metabolic networks. They should be considered when modeling the dynamics of the culture and attempting to improve the formation of 1,3-PD. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59: 544-552, 1998.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...