Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 270 (1992), S. 95-103 
    ISSN: 1432-0878
    Keywords: Blood-brain barrier ; Central nervous system ; Septate junction ; Tight junction ; Lanthanum ; Glial cell ; Maggot ; Delia platura (Insecta)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The anatomical basis of the vertebrate blood-brain barrier is a series of tight junctions between endothelial cells of capillaries in the central nervous system. Over two decades ago, tight junctions were also proposed as the basis of the blood-brain barrier in insects. Currently there is a growing understanding that septate junctions might possess barrier properties in various invertebrate epithelial cells. We now examine these two views by studying the blood-brain barrier properties of the early postembryonic larva of a dipteran fly (Delia platura) by transmission electron microscopy. Newly hatched larvae possess a functioning blood-brain barrier that excludes the extracellular tracer, ionic lanthanum. This barrier is intact throughout the second instar stage as well. The ultrastructural correlate of this barrier is a series of extensive septate junctions that pervade the intercellular space between adjacent perineurial cells. No tight junctions were located in either nerve, glial or perineurial cell layers. We suggest that the overall barrier might involve septate junctions within extensive, meandering intercellular clefts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 159 (1975), S. 379-385 
    ISSN: 1432-0878
    Keywords: Compound eye ; Musca domestica ; Ommatidium ; Distal retinula ; Scanning electron microscopy ; Corneal lens ; Corneal pigment cell ; Pseudocone ; Semper cell ; Basement membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distal aspect of the housefly ommatidium was surveyed by the scanning electron microscope. Attention was directed to the somal eminence of the superior central cell and the lens to large pigment cell junction. The underside of each lens facet exhibits six hexagonally arranged incisures. Into each of these indentations are fitted several large pigment cells. This hexagonal indentation appears to be a tenacious anchorage. Two corneal pigment cells laterally encircle the pseudocone and at their proximal extension they enclose the Semper cells and neck of the retinula. The somal eminence of the superior central cell is about 10 μm from the base of the corneal pigment cell enclosure. Micrographs were used to construct a diagram of the ommatidium above the basement membrane. Suggestions are made as to the functional correlates of the observed ommatidial structures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 170 (1976), S. 77-88 
    ISSN: 1432-0878
    Keywords: Compound eye ; House fly ; Large pigment cells ; Corneal pigment cells ; High voltage and conventional electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The fine structure and cellular associations of the large pigment cells (LPC's) of the compound eye of the house fly were studied with high voltage and conventional electron microscopy. Depending on the sector of the compound eye, the facets are either rectangular or hexagonal. The underside of each facet has indentations exactly aligned with those on top into which inserts an angulated sleeve of LPC's. Under the rectangular lens facet 6 or 8 small compact (in cross section) LPC's join four elongate LPC's. Clusters of compact cells alternate in this ring with elongate ones. Compact cells compress together and become quadrangular (in cross section) several microns below their insertion into the lens and form “building block” corners while elongate cells form “side rails” for the rectangular type of distal pseudocone enclosure. Beneath hexagonal facets all LPC's are rather elongate with out corner cells. In both facet types LPC's enclose the pseudocone for a longitudinal distance of 4 μm and then are displaced as bordering cells by a sleeve of two corneal pigment cells (CPC's), each of which encloses half of the proximal pseudocone. For the following 6 μm of longitudinal distance these concentric sleeves of CPC's and LPC's form a double layer around the pseudocone. At about 10 μm below lens base the two sleeves separate; LPC's become attenuated and extend cable-like to the basement membrane and CPC's enclose the proximal pseudocone, Semper cells and distal retinula. The junction between lens and LPC's has critical structural value in that (1) this is the sole anchorage to the lens by the lengthy remainder of the ommatidium, and (2) LPC's enclose the semiliquid pseudocone in the most distal portion of the pseudocone. In addition to vertical support, the LPC's send out numerous lateral processes that make structural contact among themselves, with the corneal pigment cells and the photoreceptor cells. The structural features of this array are discussed relative to possible physiological roles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 214 (1981), S. 541-552 
    ISSN: 1432-0878
    Keywords: Lanthanum ; Freeze-fracture ; Housefly ; Photoreceptor cells ; Extracellular space
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The retinular (R) cell junction between adjacent photoreceptor cells in the house-fly ommatidium was characterized by freeze fracture, thin section and tracer (lanthanum) studies. Focal tight junctions occur between cells, and some P face ridge-E face groove correspondences are present in this intramembranal area. When colloidal lanthanum was introduced into the extracellular space (ECS) of the peripheral retina of the housefly, this electrondense tracer moved from the ECS (extra-ommatidial space), through the R-cell junctions and belt desmosomes, into the ommatidial cavity (OC = intrarhabdomal space) of each ommatidium. In the OC, lanthanum outlined a meshwork structure that pervaded this space. The evidence of this tracer movement suggests that there may be ionic continuity between the “traditional” ECS and the fluid bathing the individual rhabdomeres. The volume of the OC is calculated and we suggest that this space is part of the ECS. The functional implications of this postulate are considered in the light of: (1) the different functions of the peripheral and central cells; (2) the dissimilarity of rhabdomal membrane surface facing the OC compared to the “unmodified” plasma membrane of the photoreceptor cell facing the extra-ommatidial cavity; (3) the permeability properties of the R cell junction; and (4) the total ECS containing an ion store capable of sustaining current for the generator potential.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 217 (1981), S. 373-386 
    ISSN: 1432-0878
    Keywords: Perineurium ; Housefly ; First optic neuropile ; Transmission electron microscopy ; Lanthanum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The ultrastructure of the perineurial cells of Musca overlying the first optic neuropile was examined by transmission electron microscopy. These cells are somewhat similar to those of other insects but cytoplasmic flanges seem to be absent, and mitochondria are relatively large and sinuous. The intercellular channel system on the lateral border of the cells is relatively spacious and highly meandering. Perineurial cells are joined by septate, gap, and tight junctions, hemidesmosomes, and desmosomes. Tight and septate junctions bond perineurial cells and glial cells. These data are evaluated on the basis of tracer studies with lanthanum. This material penetrates the extracellular space between perineurium and underlying glial and nerve cells, between epithelial glial cells and retinular axon terminals (capitate projections), and between the α-β fiber pair in the optic cartridge (gnarls). If no damage occurs to the perineurial cells during tissue preparation, this passage of lanthanum to neuronal surfaces indicates that the blood brain barrier is incomplete in this restricted area. Supportive evidence for such permeance is based on electrophysiological data, considerations of membrane specializations in the optic neuropile, and Na+/K+ ratios of dipteran hemolymph.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 246 (1986), S. 481-486 
    ISSN: 1432-0878
    Keywords: Glia ; Photoreceptors ; Compound eye ; Lamina ganglionaris ; Capitate projections ; Diptera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Photoreceptor axons in the first optic neuropil of the dipteran flies Musca domestica and Drosophila melanogaster were examined with electron microscopy. The objective was to determine ultrastructure, persistence and glial source of the capitate projections found within these neurons. Capitate projections are simple or compound processes of epithelial glial cells which profusely insert into form-fitting folds of axon terminals of the peripheral retinular cells (R1–6) in the synaptic plexus portion of the first optic neuropil. These neuro-glial junctions may be simple indentations, have a head with a single stalk, or possess a single, circular stalk from which 3 or 4 bulbous (glial) heads are elaborated. Using serial thick sections of Drosophila neuropil for HVEM we were able to observe that the stalks connecting nearly all capitate projections led directly to a glial cell. Thus no disembodied heads were found suspended in axoplasm. Capitate projections appeared to be persistent structures, present in young as well as senescent adults. No evolution of form was found; thus 3 distinct expressions of these glial processes (without transitional forms) are present. From freeze-fracture replicas and serial HVEM sections it was determined that there were approximately 3 capitate projections per μm2 in Drosophila and Musca, respectively. About 800 capitate projections exist per Musca axon terminal or about 5 times the number of chemical synapses. Cp's were slightly larger in Drosophila than in Musca, although the Musca retinular axon has twice the diameter and length of that of the fruit fly. The evidence was reviewed in light of the likely supportive function of capitate projections on the R1–6 terminals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0878
    Keywords: Glia ; Gap junctions ; Lamina ganglionaris ; Compound eye ; Neurons, housefly
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The cell-body layer of the lamina ganglionaris of the housefly, Musca domestica, contains the perikarya of five types of monopolar interneuron (L1–L5) along with their enveloping neuroglia (Strausfeld 1971). We confirm previous reports (Trujillo-Cenóz 1965; Boschek 1971) that monopolar cell bodies in the lamina form three structural classes: Class I, Class II, and midget monopolar cells. Class-I cells (L1 and L2) have large (8–15 μm) often crescentshaped cell bodies, much perinuclear cytoplasm and deep glial invaginations. Class-II cells (L3 and L4) have smaller perikarya (4–8 μm) with little perinuclear cytoplasm and no glial invaginations. The ‘midget’ monopolar cell (L5) resides at the base of the cell-body layer and has a cubshaped cell body. Though embedded within a reticulum of satellite glia, the L1–L4 monopolar perikarya and their immediately proximal neurites frequently appose each other directly. Typical arthropod (β-type) gap junctions are routinely observed at these interfaces. These junctions can span up to 0.8 μm with an intercellular space of 2–4 nm. The surrounding nonspecialized interspace is 12–20 nm. Freezefracture replicas of monopolar appositions confirm the presence of β-type gap junctions, i.e., circular plaques (0.15–0.7 μm diam.) of large (10–15 nm) E-face particles. Gap junctions are present between Class I somata and their proximal neurites, between Class I and Class II somata and proximal neurites, and between Class II somata. Intercartridge coupling may exist between such monopolar somata. The cell body and proximal neurite of L5 were not examined. We also find that Class I and Class II somata are extensively linked to their satellite glia via gap junctions. The gap width and nonjunctional interspace between neuron and glia are the same as those found between neurons. The particular arrangement and morphology of lamina monopolar neurons suggest that coupling or low resistance pathways between functionally distinct neurons and between neuron and glia are probably related to the metabolic requirements of the “nuclear” layer and may play a role in wide field signal averaging and light adaptation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 149 (1974), S. 21-41 
    ISSN: 1432-0878
    Keywords: Compound eye ; Musca domestica ; Ommatidia ; Optic cartridge ; Basement membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The compound eye of the housefly, from lens to first optic neuropile (lamina ganglionaris) was examined with a scanning electron microscope. Key findings are as follows: The pseudocone cavity is enclosed by six corneal pigment cells. The nuclei of the six cells are firmly anchored to the underside of the lens and portions remain after lens delamination from the pseudocone cavity. An eccentrically-positioned, short photoreceptor cell was observed near the region where the inferior central cell initiates its rhabdom. This eminence may represent that cell's soma. The basement membrane is revealed as a two-tiered, fibrous layer with ovoid fenestrations. Each opening is sealed with a diaphragm perforated by eight retinular axons and a trachea. Conjoined distal surfaces of the satellite glial cells form a membrane-like barrier immediately underlying the basement membrane. Monopolar somata from the lamina are covered with glial cells which possibly make more intimate contact with the somata through miniscule projections. Optic cartridges with monopolar interneurons were noted. Spherical to slightly biconcave processes of these interneurons contact retinular axons. Very fine (1000 Å) filaments interweave among and contact lateral processes. Further implications are discussed as they relate to observed structures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...