Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 116 (1978), S. 1-8 
    ISSN: 1432-072X
    Keywords: Chemotaxis ; Bacillus subtilis ; Motility ; Valinomycin ; Nigericin ; Lipophilic cations ; Methylation ; Hyperpolarizing wave ; Ion gate ; Proton-motive force
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of nigericin, valinomycin and some lipophilic cations on the motile behavior of non-starved and methionine-starved Bacillus subtilis cells were studied. For valinomycin and nigericin a quantitative relationship between the flux in the proton-motive force and the duration of the twiddle response was found. Lipophilic cations bind to the ion gate controlling the twiddle frequency and thereby cause the cells to swim smoothly. To explain the transmission of the chemotactic signal a model is given in which receptors, a hyperpolarizing wave, an ion gate and two methylation sites, viz. methyl-accepting chemotaxis proteins and a further methylation site (MT), play a role. For the transmission of the signal caused by an attractant both the hyperpolarizing wave and an interaction between receptor and methylation site (MT) are needed. The methyl-accepting chemotaxis proteins are involved in the adaptation/deadaptation to altered levels of attractant. Artificial changes in the proton-motive force act directly on the ion gate, which finally controlls the twiddle frequency of the cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...