Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Key words NADPH-diaphorase ; Nitric oxide synthase ; Development ; ontogenetic ; Lymnaea stagnalis (Mollusca)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Nicotinamide-adenine-dinucleotide-phosphate-diaphorase (NADPH-d) histochemistry has been applied in the present study to determine the distribution of putative nitric oxide (nitric oxide synthase)-producing cells during embryonic and early postembryonic development in the pond snail, Lymnaea stagnalis L., with special reference to the nervous system. The first NADPH-d-positive structures appear as early as 18% of development (E18, trochophore stage) and correspond to the pair of protonephridia. These structures later show disintegration, although after metamorphosis (E26=75%) staining of their individually spreading cells can be observed until hatching. Peripheral sensory neurons in the foot, mantle edge and lips, and their afferents projecting to the central nervous system reveal NADPH-d activity in the postmetamorphosis period (E25–E27=E60%–E80%) of embryogenesis. After hatching (P1–P3), a number of stained sensory cells appear in the pharynx and esophagus. Some NADPH-d positive neuronal perikarya occur in the pedal and pleural ganglia, and a few weakly stained cells in the cerebral and buccal ganglia of juvenile snails. At the same time, a continuous bundle of reactive fibers is formed in the neuropil both through and through around the circumesophageal ganglion ring. The localization of NADPH-d activity in the developing nervous system of Lymnaea suggests that nitric oxide participates mainly in sensory processes. However, its role in specific intraganglionic integrative events cannot be excluded following embryonic metamorphosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Key words Pigment-dispersing hormone ; Immunocytochemistry ; Central nervous system ; Gastropoda ; Helix pomatia ; Lymnaea stagnalis (Mollusca)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract By using an antiserum raised against a crustacean β-pigment-dispersing hormone (PDH), the distribution and chemical neuroanatomy of PDH-like immunoreactive neurons was investigated in the central nervous system of the gastropod snails, Helix pomatia and Lymnaea stagnalis. The number of immunoreactive cells in the Helix central nervous system was found to be large (700–900), whereas in Lymnaea, only a limited number (50–60) of neurons showed immunoreactivity. The immunostained neurons in Helix were characterized by rich arborizations in all central ganglia and revealed massive innervation of all peripheral nerves and the neural (connective tissue) sheath around the ganglia and peripheral nerve trunks. A small number of Helix nerve cell bodies in the viscero-parietal ganglion complex were also found to be innervated by PDH-like immunoreactive processes. Hence, a complex central and peripheral regulatory role, including neurohormonal actions, is suggested for a PDH-like substance in Helix, whereas the sites of action may be more limited in Lymnaea.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 189 (1978), S. 257-266 
    ISSN: 1432-0878
    Keywords: Neuromuscular junction ; Hindgut ; Crustacea ; Catecholamine ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The crustacean species Pacifastacus leniusculus and Gammarus pulex were investigated by electron microscopy in a search for possible neuromuscular junctions in the hindgut, which has a rich supply of catecholaminergic fibres. True neuromuscular synapses were found in both species between nerve terminals containing dense-core vesicles (80–110 nm in diam.) and muscle fibres. We suggest that the dense-core vesicle terminals contain a catecholamine, and this is supported by ultrahistochemical tests for monoamines. Two types of junctions are found: one in which the nerve terminal is embedded in the muscle cell (both species) and one in which protrusions from the muscle cell meet nerve terminals (Pacifastacus). Gammarus pulex, which has only circular muscles in the hindgut, has only catecholaminergic innervation, whereas Pacifastacus leniusculus has circular and longitudinal muscles both with at least two types of innervation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...