Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hydroxyphenylacetate  (1)
  • Maleylpyruvate isomerase mutants  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 154 (1990), S. 489-495 
    ISSN: 1432-072X
    Keywords: Klebsiella pneumoniae M5a1 ; 3-Hydroxybenzoate degradation ; Gentisate pathway ; 3-Hydroxybenzoate monooxygenase mutants ; Maleylpyruvate isomerase mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Growth of Klebsiella pneumoniae M5a1 on 3-hydroxybenzoate leads to the induction of 3-hydroxybenzoate monooxygenase, 2,5-dihydroxybenzoate dioxygenase, maleylpyruvate isomerase and fumarylpyruvate hydrolase. Growth in the presence of 2,5-dihydroxybenzoate also induces all of these enzymes including the 3-hydroxybenzoate monooxygenase which is not required for 2,5-dihydroxybenzoate catabolism. Mutants defective in 3-hydroxybenzoate monooxygenase fail to grow on 3-hydroxybenzoate but grow normally on 2,5-dihydroxybenzoate. Mutants lacking maleylpyruvate isomerase fail to grow on 3-hydroxybenzoate and 2,5-dihydroxybenzoate. Both kinds of mutants grow normally on 3,4-dihydroxybenzoate. Mutants defective in maleylpyruvate isomerase accumulate maleylpyruvate when exposed to 3-hydroxybenzoate and growth is inhibited. Secondary mutants that have additionally lost 3-hydroxybenzoate monooxygenase are no longer inhibited by the presence of 3-hydroxybenzoate. The 3-hydroxybenzoate monooxygenase gene (mhbM) and the maleylpyruvate isomerase gene (mhbI) are 100% co-transducible by P1 phage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 132 (1982), S. 270-275 
    ISSN: 1432-072X
    Keywords: Escherichia coli ; Succinate semialdehyde dehydrogenase ; Aromatic catabolism ; Hydroxyphenylacetate ; Genetic mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Escherichia coli mutants, unable to grown on 4-hydroxyphenylacetate, have been isolated and found to be defective in the NAD-dependent succinate semialdehyde dehydrogenase. When the mutants are grown with 4-aminobutyrate as sole nitrogen source an NAD-dependent succinate semialdehyde dehydrogenase seen in the parental strain is absent but, as in the parental strain, an NADP-dependent enzyme is induced. Growth of the mutants is inhibited by 4-hydroxyphenylacetate due to the accumulation of succinate semialdehyde. The mutants are more sensitive to inhibition by exogenous succinate semialdehyde than is the parental strain. Secondary mutants able to grow in the presence of 4-hydroxyphenylacetate but still unable to use it as sole carbon source were defective in early steps of 4-hydroxyphenylacetate catabolism and so did not form succinate semialdehyde from 4-hydroxyphenylacetate. The gene encoding the NAD-dependent succinate semialdehyde dehydrogenase of Escherichia coli K-12 was located at min 34.1 on the genetic map.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...