Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mathematics and Statistics  (4)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Numerical Methods for Partial Differential Equations 5 (1989), S. 107-120 
    ISSN: 0749-159X
    Keywords: Mathematics and Statistics ; Numerical Methods
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics
    Notes: A numerical study of the efficiency of the generalized conjugate residual methods (GCR) is performed using three different preconditioners all based upon an incomplete LU factorization. The GCR behavior is evaluated in connection with the solution of large, sparse unsymmetric systems of equations, arising from the finite element integration of the diffusion-convection equation for 2-dimensional (2-D) and 3-D problems with different Peclet and Courant numbers. The order of the test matrices ranges from 450 to 1700. Results from a set of numerical experiments are presented and comparisons with preconditioned GCR methods and with direct method are carried out.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Numerical Methods for Partial Differential Equations 4 (1988), S. 139-157 
    ISSN: 0749-159X
    Keywords: Mathematics and Statistics ; Numerical Methods
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics
    Notes: A numerical study of the efficiency of the modified conjugate gradients (MCG) is performed using different preconditioning schemes. The MCG behavior is evaluated in connection with the solution of large linear sets of symmetric positive definite (p.d.) equations, arising from the finite element (f.e.) integration of partial differential equations of parabolic and elliptic type and the analysis of the leftmost eingenspectrum of the corresponding matrices. A simple incomplete Cholesky factorization ICCG(O) having the same sparsity pattern as the original problem is compared with a more complex technique ICAJ (Ψ) where the triangular factor is allowed to progressively fill in depending on a rejection parameter Ψ. The performance of the preconditioning algorithms is explored on finite element equations whose size N ranges between 150 and 2300. The results show that an optimal Ψopt may be found which minimizes the overall CPU time for the solution of both the linear system and the eigenproblem. The comparison indicates that ICAJ (Ψopt) is not significantly more efficient than ICCG(O), which therefore appears to be a simple, robust, and reliable method for the preconditioning of large sparse finite element models.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Numerical Methods for Partial Differential Equations 10 (1994), S. 533-544 
    ISSN: 0749-159X
    Keywords: Mathematics and Statistics ; Numerical Methods
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics
    Notes: A parallel algorithm for the efficient calculation of m (m ≤ 15) eigenvalues of smallest absolute magnitude for large sparse unsymmetric matrices is implemented and presented. The procedure employes a modification of the reverse simultaneous iteration scheme, which involves, among other things, the solution of m systems of linear equations. This phase is by far the most computationally demanding of the entire algorithm. However, efficient parallelization can be achieved, highly reducing the overall computational load. Numerical experiments consider the calculation of the m = 12 and m = 15 leftmost eigenvalues and eigenvectors of seven test matrices of varying size between n = 512 and n = 3564. All the computations are performed on a 4 CPU CRAY YMP8/432 machine. The accuracy of the eigenpairs found with the proposed algorithm is independent of the number of CPUs employed. Wall clock time and speed-up measurements show that the scheme is efficient and robust and is well parallelized. In fact, average speed-up factors of up to 3.72 were obtained. © 1994 John Wiley & Sons, Inc.
    Additional Material: 8 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Numerical Methods for Partial Differential Equations 7 (1991), S. 25-41 
    ISSN: 0749-159X
    Keywords: Mathematics and Statistics ; Numerical Methods
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics
    Notes: A mesh of prismatic or tetrahedral elements automatically generated from an initial triangular grid is used to integrate 3-D flow equation in space. Many numerical comparisons between these two models have been performed. The results show that integration with tetrahedrons is as accurate as integration with prisms but much more efficient. The CPU time of solution with prismatic elements is about three times greater than that required employing tetrahedral elements.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...