Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 97 (1974), S. 163-168 
    ISSN: 1432-072X
    Keywords: Candida boidinii ; Methanol ; Assimilation ; Incorporation of ; Formaldehyde ; Ribose-Phosphate-Cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Hexose phosphate synthetase activity was found in cell-free extracts of methanol-grown Candida boidinii. Incubation of this crude extract with 14C-formaldehyde and D-ribose-5-phosphate leads to incorporation of radioactivity into fructose-and glucose phosphates. Cells grown on glucose lack the hexose phosphate synthetase activity. No hydroxypyruvate reductase activity, the key enzyme of the serine pathway was found. These results indicate that during growth of C. boidinii on methanol, cell constituents are made by a sugar phosphate pathway similar in concept, if not in absolute molecular detail, to the ribose phosphate cycle in C1-metabolizing bacteria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Mixed substrate ; Chemostat ; Methanol ; Hansenula polymorpha ; Growth-rate limitation ; Carbonflow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The yeast Hansenula polymorpha was grown in a chemostat using either methanol or sorbitol as substrate or a mixture of both. Methanol alone could be utilized up to a dilution rate (D) of 0.18 h-1, and sorbitol allowed growth at D's higher than 0.52 h-1. In combination with sorbitol, methanol was completely utilized in the mixture even up to a D of 0.3 h-1, and partially utilized at higher D's, To elucidate the basis of methanol utilization at high D's, enzyme activities on the single substrates and on the substrate mixture were compared. At D's above 0.3 h-1 an increase of formate dehydrogenase activity was evident, an enzyme involved in the oxidation of methanol to carbon dioxide. It was concluded that at high D's large amounts of methanol were oxidized to generate energy. This was proved with 14C-methanol, and it was found that in the range of partial methanol utilization approximately 75% of methanol was converted to carbon dioxide and 25% incorporated into cell material.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 117 (1978), S. 67-72 
    ISSN: 1432-072X
    Keywords: Methanol ; Degradation of microbodies ; Inactivation of enzymes ; Alcohol oxidase ; Catalase ; Candida boidinii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Degradation of microbiodies in the methanolutilizing yeastCandida boidinii was mainly studies by electron microscopical observation. The yeast cells precultured on methanol medium contained five to six microbodies per section and showed high activities of alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase. When the precultured cells were transferred into an ethanol medium the number of microbodies and concomitantly the activities of alcohol oxidase and catalase decreased. After 6 h of cultivation microbodies were hardly detected. Also the activity of alcohol oxidase was not measurable and catalase activity was reduced to one tenth, whereas the activities of formaldehyde dehydrogenase and formate dehydrogenase decreased only to about 70%. Experiments with methanol-grown cells transferred into an ethanol medium without nitrogen source indicated that the inactivation of alcohol oxidase and catalase does not require protein synthesis. However, the reappearance of these enzymes is presumably due to de novo protein synthesis as shown by experiments with cycloheximide.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...