Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1998), S. 56-63 
    ISSN: 1432-0789
    Keywords: Key words Animal manure ; Immobilization ; Mineralization ; Nitrogen ; Slurry distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  An improved understanding of the cycling of animal manure N is a prerequisite for making better use of this N source. A sheep was fed 15N-labelled grass in order to study the fate of 15N-labelled ruminant manure N in the plant-soil system. The uniformity of labelling was found to be satisfactory when an appropriate feeding strategy was used. The mineralization of labelled faecal N was compared to the mineralization of labelled feed N and indigestible feed N by measuring residual labelled organic N in unplanted topsoil in the field. After 18 months, 61% of both faecal N and feed N was recovered in organic form in the topsoil, while 94% of the indigestible feed N was still present in the soil. The influence of slurry distribution in soil on the crop uptake of labelled faecal N in slurry was studied in a sandy and a sandy loam soil. The crop uptake of labelled faecal N was compared with the uptake of 15N-labelled mineral fertilizer in a reference treatment. The uptake was 28–32% of that of the reference treatment with simulated slurry injection, 13–25% with incorporated slurry and 18–19% with slurry on the soil surface. The mineralization of faecal N in the autumn after application in spring was low irrespective of the slurry distribution in soil. The results demonstrate that the contact between animal manure and the soil matrix significantly influences the short-term turnover and availability of faecal and ammonium N in slurry, especially in fine-textured soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1997), S. 39-44 
    ISSN: 1432-0789
    Keywords: Immobilization ; Mineralization ; 15N-labelled crop residues ; Residue quality ; Soil microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using15N-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g−1 added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial biomass. A comparison of the15N enrichments of the soil organic N and the newly formed biomass N pools indicated that either residue N may have been assimilated directly by the microbial biomass without entering the soil inorganic N pool or the biomass had a higher preference for mineralized ammonium than for soil-derived nitrate already present in the soil. In the barley residue treatment, the microbial biomass N was apparently stabilized to a higher degree than the biomass N in the pea residue treatment, which declined during the incubation period. This was probably due to N-deficiency delaying the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial biomass may contribute to improved conservation of soil N sources.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1996), S. 39-44 
    ISSN: 1432-0789
    Keywords: Key words Immobilization ; Mineralization ; 15N-labelled crop residues ; Residue quality ; Soil microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using 15N-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g–1 added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial biomass. A comparison of the 15N enrichments of the soil organic N and the newly formed biomass N pools indicated that either residue N may have been assimilated directly by the microbial biomass without entering the soil inorganic N pool or the biomass had a higher preference for mineralized ammonium than for soil-derived nitrate already present in the soil. In the barley residue treatment, the microbial biomass N was apparently stabilized to a higher degree than the biomass N in the pea residue treatment, which declined during the incubation period. This was probably due to N-deficiency delaying the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial biomass may contribute to improved conservation of soil N sources.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...