Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 18 (1995), S. 1-13 
    ISSN: 1573-1634
    Keywords: Mixed convection ; thermal plume ; line source ; porous media
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract A boundary-layer analysis is presented for the mixed convection flow which is produced when a horizontal line heat source, which is embedded in an infinite fluid-saturated porous medium, generates heat at a constant rate. It is shown that the governing equations can be non-dimensionalized so that they do not involve any parameters and thus just one solution of the transformed boundary-layer equations is required. Series solutions which are valid both near the line source and far downstream are obtained and compared with the numerical solution of the full boundary-layer equations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 19 (1994), S. 889-903 
    ISSN: 0271-2091
    Keywords: SIMPLE-like algorithm ; Average pressure correction ; Paper filter ; Turbulent flow ; Sampler ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The control volume, finite difference method and the k-∊ tubulence model are employed in a numerical simulation of the turbulent fluid flow both outside and inside a blunt cylindrical sampler which houses a paper filter in its chamber. The presence of a paper filter, which has a very large resistance, results in a large pressure drop across the filter and this causes difficulties in making the SIMPLE or the SIMPLEC scheme converge. In order to improve the rate of convergence of the SIMPLE-like algorithm when the resistance of the filter is very large, an average pressure correction formula is proposed. Based on global mass conservation, a line average pressure correction for the paper filter is derived using a modified Darcy law for a porous medium. A combination of this formula and the SIMPLE-like algorithm can rapidly build up the pressure drop across the filter and hence dramatically improve the rate of convergence of the iterative scheme. Comparisons of the convergence histories and the numerical results for the fluid flow when using SIMPLE and SIMPLEC with the average pressure correction method show that the average pressure correction method for dealing with the paper filter significantly accelerates the rate of convergence of the iterative scheme.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...