Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Key words Familial amyloid polyneuropathy ; Transthyretin ; Ultrastructure ; Lectin histochemistry ; Morphometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We performed extensive quantitative analyses of the peripheral nervous system (PNS) of two siblings with familial amyloid polyneuropathy (FAP) caused by a transthyretin (TTR) Gly42 mutation. Pronounced amyloid deposition was found in the sympathetic ganglia (SyG), dorsal root ganglia (DRG) and throughout the length of the peripheral nerve fibers with some accentuation in the more proximal portion. There was severe neuronal loss in the SyG and DRG together with nerve fiber depletion in the nerve trunk, while only a small amount of amyloid deposition with mild fiber loss was seen in the spinal roots. Sprouts of regenerating axons were very scanty even in the spinal nerves or roots. A teased fiber study mainly showed demyelinating fibers, but axonal degeneration was also present throughout peripheral nerves. An electron microscopic study showed fine amyloid fibrils in direct contact with the axoplasmic membrane of demyelinated axons and destruction of axons in some areas. Amyloid deposition within the PNS in this type of FAP resembled that in type I FAP (TTR Met30). However, direct axonal damage by amyloid fibrils appeared to be more prominent in our cases than in type I FAP. Lectin histochemistry using Ulex europaeus agglutinin I demonstrated preferential depletion of small neurons in the DRG and their primary afferent fibers in the spinal dorsal horn. Primary axonal degeneration and ganglionopathy due to amyloid deposition appear to be the pathogenetic mechanisms for peripheral neuropathy in this type of FAP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Familial amyloid polyneuropathy ; Transthyretin ; Ultrastructure ; Lectin histochemistry ; Morphometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We performed extensive quantitative analyses of the peripheral nervous system (PNS) of two siblings with familial amyloid polyneuropathy (FAP) caused by a transthyretin (TTR) Gly42 mutation. Pronounced amyloid deposition was found in the sympathetic ganglia (SyG), dorsal root ganglia (DRG) and throughout the length of the peripheral nerve fibers with some accentuation in the more proximal portion. There was severe neuronal loss in the SyG and DRG together with nerve fiber depletion in the nerve trunk, while only a small amount of amyloid deposition with mild fiber loss was seen in the spinal roots. Sprouts of regenerating axons were very scanty even in the spinal nerves or roots. A teased fiber study mainly showed demyelinating fibers, but axonal degeneration was also present throughout peripheral nerves. An electron microscopic study showed fine amyloid fibrils in direct contact with the axoplasmic membrane of demyelinated axons and destruction of axons in some areas. Amyloid deposition within the PNS in this type of FAP resembled that in type I FAP (TTR Met30). However, direct axonal damage by amyloid fibrils appeared to be more prominent in our cases than in type I FAP. Lectin histochemistry using Ulex europaeus agglutinin I demonstrated preferential depletion of small neurons in the DRG and their primary afferent fibers in the spinal dorsal horn. Primary axonal degeneration and ganglionopathy due to amyloid deposition appear to be the pathogenetic mechanisms for peripheral neuropathy in this type of FAP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: CA++-ATPase ; Pituitary gland, pars nervosa ; Pituicytes ; Neurosecretion ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Ca++-ATPase activity (cf. Ando et al. 1981) was examined both light- and electron-microscopically in the neurohypophysis of the guinea pig. Apart from a strong activity within the walls of the blood vessels, in the parenchyma of the neurohypophysis the reaction product of the Ca++-ATPase activity was restricted to the plasmalemma of the pituicytes. This reaction was completely dependent upon Ca++ and the substrate, ATP; the reaction was inhibited by 0.1 mM quercetin, an inhibitor of Ca++-ATPase. A reduction of the enzyme activity occurred by 1) adding Mg++ to the standard incubation medium, and 2) substituting Ca++ with Mg++ at varing concentrations. In all experiments the neurosecretory fibers were devoid of Ca++-ATPase activity. The function of the Ca++-ATPase activity in the plasmalemma of the pituicytes is discussed in connection with the regulation of the extracellular Ca++ concentration, which seems to be important with respect to the discharge of secretory material from the neurosecretory fibers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: Ca++-ATPase ; K+-NPPase ; Na+-K+ATPase ; Ultracytochemistry ; Photoreceptor cells, retinal ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Ca++-ATPase activity was demonstrated histochemically at light- and electron-microscopic levels in inner and outer segments of retinal photoreceptor cells of the guinea pig with the use of a newly developed one-step lead-citrate method (Ando et al. 1981). The localization of ouabain-sensitive, K+-dependent p-nitrophenylphosphatase (K+-NPPase) activity, which represents the second dephosphorylative step of the Na+-K+-ATPase system, was studied by use of the one-step method newly adapted for ultracytochemistry (Mayahara et al. 1980). In retinal photoreceptor cells fixed for 15 min in 2% paraformaldehyde the electron-dense Ca++-ATPase reaction product accumulated significantly on the inner membranes of the mitochondria but not on the plasmalemma or other cytoplasmic elements of the inner segments. The membranes of the outer segments remained unstained except the membrane arrays in close apposition to the retinal pigment epithelium. The cytochemical reaction was Ca++- and substrate-dependent and showed sensitivity to oligomycin. When Mg++-ions were used instead of Ca++-ions, a distinct reaction was also found on mitochondrial inner membranes. In contrast to the localization of the Ca++ -ATPase activity, the K+-NPPase activity was demonstrated only on the plasmalemma of the inner segments, but not on the mitochondria, other cytoplasmic elements or the outer segment membranes. This reaction was almost completely abolished by ouabain or by elimination of K+ from the incubation medium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...