Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 260 (1998), S. 372-380 
    ISSN: 1617-4623
    Keywords: Key words Maize ; Flavonoids ; Myb ; Tandem repeats ; Tissue-specific silencing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The maize P gene encodes a Myb-homologous transcriptional regulator of flavonoid pigmentation in floral organs, and different P gene alleles condition precise tissue- and organ-specific pigmentation patterns. To determine the molecular basis for allele-specific expression patterns, we have isolated and compared two natural alleles of the P gene which differ in expression, structure and copy number. The P-rr allele is associated with pigmentation of most floral tissues and contains a single copy of the P gene. In contrast, the P-wr allele restricts pigmentation to a subset of floral tissues, and is composed of six gene copies arranged in a tandem head-to-tail array. Each of the six repeats contains a single P gene, including regulatory and coding sequences. Despite the six-fold tandem repetition of P-wr gene copies, P-wr mRNA levels in kernel pericarp are much reduced compared to mRNA levels from the single-copy P-rr gene. Moreover, the P-wr multicopy complex is hypermethylated relative to P-rr. Thus, maize P gene alleles may represent a natural system for studying the effects of methylation and gene copy number on tissue-specific gene expression. We discuss the possibility that somatic pairing of repeated gene copies may be involved in regulating gene expression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 263 (2000), S. 22-29 
    ISSN: 1617-4623
    Keywords: Key words Direct repeat ; Recombination ; Transposon ; Arabidopsis ; β-Glucuronidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In plants, the frequency of spontaneous intrachromosomal homologous recombination is low. Here, we show that a maize transposable element greatly stimulates intrachromosomal homologous recombination between direct repeat sequences in Arabidopsis. Plants were transformed with a construct (GU-Ds-US) containing a Ds (Dissociation) transposable element inserted between two partially deleted GUS reporter gene segments. Homologous recombination between the overlapping GUS fragments generates clonal sectors visible upon staining for GUS activity. Plants containing the GU-Ds-US construct and a source of Ac (Activator) transposase showed an over 1000-fold increase in the incidence of recombination relative to plants containing the same construct but lacking transposase. Transposon-induced recombination was observed in vegetative and floral organs, and several germinally transmitted events were recovered. Transposon-induced recombination appears to be a general phenomenon in plants, and thus may have contributed to genome evolution by inducing deletions between repeated sequences.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...