Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 229-235 
    ISSN: 1432-0789
    Keywords: Key words Denitrification ; N2-fixation ; Fermentation ; N2O/N2 ratio ; C-availability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrate and glucose additions were investigated for their role in the C and N dynamics during anaerobic incubation of soil. A gas-flow soil core method was used, in which the net production of N2, N2O, NO, CO2, and CH4 under a He atmosphere could be monitored both accurately and frequently. In all experiments clayey silt loam soil samples were incubated for 9 days at 25°C. Addition of nitrate (50 mg KNO3-N kg–1 soil) had no effect on total denitrification and CO2 production rates, while the N2O/N2 ratio was affected considerably. The cumulative N2O production exceeded the cumulative N2 production for 6 days in the treatment with nitrate addition, compared to 1.2 days in the unamended treatment. Glucose addition stimulated the microbial activity considerably. The denitrification rates were limited by the growth rate of the denitrifying population. During denitrification no significant differences were observed between the treatments with 700 mg glucose-C kg–1 and 4200 mg glucose-C kg–1, both in combination with 50 mg KNO3-N kg–1. The N2 production rates were remarkably low, until NO3 – exhaustion caused rapid reduction of N2O to N2 at day 2. During the denitrification period 15–18 mg N kg–1 was immobilised in the growing biomass. After NO3 – shortage, a second microbial population, capable of N2-fixation, became increasingly important. This change was clearly reflected in the CO2 production rates. Net volatile fatty acid (VFA) production was monitored during the net N2-fixation period with acetate as the dominant product. N2-fixation faded out, probably due to N2 shortage, followed by increased VFA production. In the high C treatment butyrate became the most important VFA, while in the low C treatment acetate and butyrate were produced at equal rates. During denitrification no VFA accumulation occurred; this does not prove, however, that denitrification and fermentation appeared sequentially. The experiments illustrate clearly the interactions of C-availability, microbial population and nitrate availability as influencing factors on denitrification and fermentation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 229-235 
    ISSN: 1432-0789
    Keywords: Denitrification ; N2-fixation ; Fermentation ; N2O/N2 ratio ; C-availability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrate and glucose additions were investigated for their role in the C and N dynamics during anaerobic incubation of soil. A gas-flow soil core method was used, in which the net production of N2, N2O, NO, CO2, and CH4 under a He atmosphere could be monitored both accurately and frequently. In all experiments clayey silt loam soil samples were incubated for 9 days at 25 °C. Addition of nitrate (50 mg KNO3-N kg-1 soil) had no effect on total denitrification and CO2 production rates, while the N2O/N2 ratio was affected considerably. The cumulative N2O production exceeded the cumulative N2 production for 6 days in the treatment with nitrate addition, compared to 1.2 days in the unamended treatment. Glucose addition stimulated the microbial activity considerably. The denitrification rates were limited by the growth rate of the denitrifying population. During denitrification no significant differences were observed between the treatments with 700 mg glucose-C kg-1 and 4200 mg glucose-C kg-1, both in combination with 50 mg KNO3-N kg-1. The N2 production rates were remarkably low, until NO inf3 sup- exhaustion caused rapid reduction of N2O to N2 at day 2. During the denitrification period 15–18 mg N kg-1 was immobilised in the growing biomass. After NO inf3 sup- shortage, a second microbial population, capable of N2-fixation, became increasingly important. This change was clearly reflected in the CO2 production rates. Net volatile fatty acid (VFA) production was monitored during the net N2-fixation period with acetate as the dominant product. N2-fixation faded out, probably due to N2 shortage, followed by increased VFA production. In the high C treatment butyrate became the most important VFA, while in the low C treatment acetate and butyrate were produced at equal rates. During denitrification no VFA accumulation occurred; this does not prove, however, that denitrification and fermentation appeared sequentially. The experiments illustrate clearly the interactions of C-availability, microbial population and nitrate availability as influencing factors on denitrification and fermentation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Key words Competitiveness ; Genetic exchange ; Rhizobium etli ; Rhizobium tropici IIB ; Saprophytic ; competence ; Symbiotic nitrogen fixation ; Nodule population
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Inoculation of beans (Phaseolus vulgaris L.) with strains of R. tropici IIB and R. etli resulted in the disappearance of the R. tropici IIB stains from the nodule population and their replacement by other (non R. tropici IIB) bean symbionts (Vlassak et al. 1996). Coinoculation studies in monoxenic conditions and in soil core microcosms with plants harvested at two different growth stages indicated that the inoculated R. tropici IIB strains CIAT899 and F98.5 possess a good intrinsic competitiveness which declines, however, at a later plant growth stage and in soil conditions. The poor saprophytic competence of R. tropici IIB strain CIAT899 was further demonstrated by its poor survival in soil core microcosms after bean harvest. Strains were isolated from the field plots with a 3-year bean-planting history, characterized and evaluated for their competitiveness against R. tropici IIB strain CIAT899. Isolates from field plots, which had been repeatedly inoculated with R. tropici IIB strain CIAT899, showed a higher nodule occupancy compared to R. tropici IIB strain CIAT899, and this higher competitiveness exhibited by the field isolates might be an additional reason for the poor performance of R. tropici IIB strain CIAT899 in the field study. Plots with and without a history of bean production revealed after 3-year bean cultivation an almost totally different population that also significantly differed in competitiveness.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0789
    Keywords: Competition ; Inoculation ; N2 fixation ; Phaseolus vulgaris ; Rhizobium etli ; Rhizobium tropici ; Nodule occupancy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Strains of Rhizobium tropici IIB, CIAT899 and F98.5, both showing good N2 fixation, and a R. etli strain W16.3SB were introduced into a field which had no history of bean culture. Plant dilution estimates showed that in the presence of its host (Phaseolus vulgaris cv. Carioca) during the cropping seasons and the subsequent fallow summer periods, the bean rhizobial populations increased from less than 30 to 103 g−1 dry soil after 1 year and to 104 g−1 dry soil after 2 years. In the 1st year crop, the inoculated strains occupied most of the nodules, which resulted in a higher nodulation and C2H2 reduction activity. Without reinoculation for the second and third crops, however, little R. tropici IIB was recovered from the nodules and the bean population consisted mainly of R. etli, R. leguminosarum bv. phaseoli, and R. tropici IIA. Reinoculation with our superior R. tropici IIB strains before the second crop resulted in R. tropici IIB occupying the main part of the nodules and a positive effect on nodulation and C2H2 reduction activity, but reintroduction of the inoculant strain in the third season did not have any effect.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: aerobic preincubation ; available carbon ; CO2 production ; denitrification ; N2O/N2 ratio ; water soluble carbon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Net productions of permanent soil atmosphere gases (N2, CO2, O2) and temporary gases (N2O, NO) were monitored in soil cores using a non-interfering, fully automated measuring technique allowing highly time resolved measurements over prolonged periods. The influence of changes in available organic carbon on CO2, N2O, NO and N2 production was studied by changing the soil carbon content through aerobic preincubations of different length, up to 21 days. The aerobic preincubation caused an increase in NO3 - concentration and a decrease in available carbon content. Available carbon content dominated both CO2 and total N gas (N2+N2O+NO) production during anaerobiosis. Both CO2 and total N gas production rates decreased with increasing length of the previous aerobic preincubation, this in spite of the higher initial NO3 - concentration. Total denitrification rates were closely related to the anaerobic CO2 production rates. No relation was found between water soluble carbon content and total denitrification. The N2O/N2 ratio could be explained by an interaction of carbon availability, NO3 - concentration and enzyme status. Net N2O consumption was monitored. The balance between cumulative total N gas production and NO3 - consumption varied according to the different treatments. Cumulative N2O production exceeded cumulative N2 production for 0 up to 5 days.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...