Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hyperglycaemia  (1)
  • Neural tube defect  (1)
  • 1
    ISSN: 1432-5233
    Keywords: Embryogenesis ; Glucose transporter ; Growth retardation ; Hypoglycemia ; Neural tube defect ; Rat embryo culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We investigated the glucose transporter gene and protein expression during early organogenesis in the rat and in rat embryos cultured with hypoglycemic serum. Erythrocyte-type glucose transporter (GLUT-1) mRNA was expressed at a high level in embryos; peak levels were reached at days 10.5–11.5 and decreased as gestational age increased. In contrast, the insulin regulaable glucose transporter (GLUT-4) mRNA was not detected. The levels of GLUT-1 protein determined by Western blot analysis increased in parallel with expression of the glucose transporter (GLUT-1) gene and peak levels were observed on days 10.5 and 11.5, which correspond to the main periods of neural tube formation. Immunohistochemical staining of the embryo on day 10.5 showed that GLUT-1 protein was abundantly located in the tissue of neural tube. When embryos were cultured from day 9.5 to day 10.5 with insulin-induced hypoglycemic serum containing 2–3 mM glucose an increased frequency of anterior neural tube defects was observed in association with a significant reduction of the glycolytic flux. Increased levels of GLUT-1 mRNA and protein were not observed during the culture with hypoglycemic serum compared with the levels in embryos cultured in normal serum. Addition of insulin to normal serum (500 μU/ml) did not affect the GLUT-1 mRNA and protein levels. GLUT-1 mRNA and protein are strongly expressed in the embryo during early organogenesis, especially in the tissues of the neural tube, and the expression of the glucose transporter did not increase in response to prolonged glycopenia. This may account for the vulnerability of embryogenesis to hypoglycemia during these critical developmental periods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Hyperglycaemia ; embryogenesis ; rat embryo culture ; malformation ; sorbitol ; myo-inositol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To demonstrate the myo-inositol depletion hypothesis in hyperglycaemia-induced embryopathy, rat conceptuses of 9.5 days of gestation in the early head-fold stage were grown in vitro during neural tube formation for 48 h with increasing amounts of glucose. The effects of an aldose reductase inhibitor and the myo-inositol supplementation were also investigated. Sorbitol and myo-inositol contents were measured in separated embryos and extra-embryonic membranes including yolk sac and amnion at the end of culture. After addition of 33.3 mmol/l and 66.7 mmol/l glucose to the culture media, the myo-inositol content of the embryos was significantly decreased by 43.1% (p〈0.05) and 64.6% (p 〈 0.01) of the control group, while a marked accumulation of sorbitol was observed (25 and 41 times that of the control). Although the addition of an aldose reductase inhibitor (0.7 mmol/l) to the hyperglycaemic culture media containing an additional 66.7 mmol/l glucose significantly reduced the sorbitol content of embryos to approximately one-eighth, the myo-inositol content of embryos remained decreased and the frequency of neural lesions was unchanged (23.1% vs 23.9%, NS). Supplementation of the myo-inositol (0.28 mmol/l) completely restored the myo-inositol content of the embryos and resulted in a significant decrease in the frequency of neural lesions (7.1% vs 23.9%, p 〈 0.01) and a significant increase in crown-rump length and somite numbers. Much less significantly, sorbitol accumulation was also observed in the extra-embryonic membrane in response to hyperglycaemia, neither hyperglycaemia nor the myo-inositol supplementation modified the myo-inositol contents of the extra-embryonic membrane. We conclude that the mechanism of hyperglycaemia-induced teratogenicity was mediated by the myo-inositol depletion of the embryo at a critical stage of organogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...