Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (7)
  • Microtubules  (4)
  • Nicotiana  (3)
  • 1
    ISSN: 1432-2145
    Keywords: Female germ unit ; Nicotiana ; Megagametophyte ; Organelle movement ; Video microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Living embryo sacs and megagametophytic cells of Nicotiana alata and Nicotiana tabacum were obtained using enzymatic maceration and microdissection. The yields of isolated embryo sacs, egg apparatus and central cells were up to 35%, 40% and 35%, respectively. Vectorial movement of organelles and undulations of tubular structures, presumably endoplasmic reticulum, were observed in eggs, synergids and central cells using video-enhanced microscopy. Despite evident viability using the fluorochromatic reaction, the egg displays much less organelle movement and therefore appears to be quiescent. The large vacuole of the central cell is traversed by mobile strands of cytoplasm through which organelles migrate. A polygonal network is located at the periphery of the central cell, which may contribute to anchorage of the cell with the embryo-sac wall. The observation of organelle movement provides direct evidence of the condition of the cell and may be a useful approach for assessing cell vigor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Kinesin ; Nicotiana ; Organelle movement ; Pollen tube
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In plant cells, microtubule-based motor proteins have not been characterized to the same degree as in animal cells; therefore, it is not yet clear whether the movement of organelles and vesicles is also dependent on the microtubular cytoskeleton. In this work the kinesinimmunoreactive homologue from pollen tubes of Nicotiana tabacum L. has been purified and biochemically characterized. The protein preparation mainly contained a polypeptide with a relative molecular weight of approx. 100 kDa. This polypeptide bound to animal microtubules in an ATP-dependent manner and it further copurified with an ATPase activity fourfold-stimulated by the presence of microtubules. In addition, the sedimentation coefficient (approx. 9S) was similar to those previously shown for other kinesins. Immunofluorescence analyses revealed a partial co-distribution of the protein with microtubules in the pollen tube. These data clearly indicate that several properties of the kinesin-immunoreactive homologue are similar to those of kinesin proteins, and suggest that molecular mechanisms analogous to those of animal cells may drive the microtubule-based motility of organelles and vesicles in plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 5 (1992), S. 64-71 
    ISSN: 1432-2145
    Keywords: Generative cell ; Isolation ; Microtubules ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Upon squashing of the pollen grain, the isolated generative cell ofNicotiana tabacum looses its spindle shape to become spherical; this phenomenon is independent of the sucrose concentration used. The time necessary for this change can vary from 1 min (0% sucrose) to 20 min (30% sucrose). The microtubular cytoskeleton was studied by means of immunofluorescence and electron microscopy. Just after isolation, 5 to 15 clearly visible bundles in microtubules organized in a basket-like structure are present. After 15 min in medium with 15% sucrose, the microtubular cytoskeleton disappears, and a diffusely spread tubulin can be observed. Neither the addition of 10–20 μM taxol to the medium, nor the omission of Ca2+ to the medium has any effect on the changes in cell shape and loss of microtubular bundles after isolation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 140 (1987), S. 141-150 
    ISSN: 1615-6102
    Keywords: Cytoskeleton ; Freeze substitution ; Nicotiana ; Pollen tubes ; Rapid freeze fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ultrastructure of the cytoskeleton inNicotiana alata pollen tubes grownin vitro has been examined after rapid freeze fixation and freeze substitution (RF-FS). Whereas cytoplasmic microtubules (MTs) and especially microfilaments (MFs) are infrequently observed after conventional chemical fixation, they occur in all samples prepared by RF-FS. Cortical MTs are oriented parallel to the long axis of the pollen tube and usually appear evenly spaced around the circumference of the cell. They are always observed with other components in a structural complex that includes the following: 1. a system of MFs, in which individual elements are aligned along the sides of the MTs and crossbridged to them; 2. a system of cooriented tubular endoplasmic reticulum (ER) lying beneath the MTs, and 3. the plasma membrane (PM) to which the MTs appear to be extensively linked. The cortical cytoskeleton is thus structurally complex, and contains elements such as MFs and ER that must be considered together with the MTs in any attempt to elucidate cytoskeletal function. MTs are also observed within the vegetative cytoplasm either singly or in small groups. Observations reveal that some of these may be closely associated with the envelope of the vegetative nucleus. MTs of the generative cell, in contrast to those of the vegetative cytoplasm, occur tightly clustered in bundles and show extensive cross-bridging. These bundles, especially in the distal tail of the generative cell, are markedly undulated. MFs are observed commonly in the cytoplasm of the vegetative cell. They occur in bundles oriented predominantly parallel to the pollen tube axis. Although proof is not provided, we suggest that they are composed of actin and are responsible for generating the vigorous cytoplasmic streaming characteristic of living pollen tubes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 150 (1989), S. 54-71 
    ISSN: 1615-6102
    Keywords: Generative cell ; Microtubules ; Mitosis ; Cytokinesis ; Pollen ; Sperm ; Tradescantia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cytoskeletal organization and chromosome behavior were studied inTradescantia generative cells prior to and during sperm formation using in vitro grown pollen tubes and fluorescence staining methods. Before pollen germination, the crescent-shaped generative cell contains a reticulate microtubule (Mt) system. The cell elongates dramatically after germination, and its Mts assume a helical to longitudinal arrangement. Chromosome condensation is evident approximately 3hr after germination. Kinetochores appear as dark interruptions in the Mt array, and thus seem to attach directly to interphase fibers. No metaphase plate typical of other cells is observed with either DAPI or anti-tubulin staining. Instead, the chromosomes adopt a twisted or braided arrangement, with kinetochores distributed along the length of the cell and kinetochore fibers linked to each other and to surrounding fibers. Anaphase is characterized by a staggered, overlapping separation of chromosomes and by elongation of Mt branches connecting opposing kinetochore fibers. Cytokinesis appears to utilize a furrowing process; a phragmoplast or cell plate was never seen. As a result of these events, the sperm directly inherit their cytoskeleton from generative cell Mts involved in division. No actin fibers are observed at any stage using rhodamine-phalloidin staining. The results are discussed in terms of other reports on sperm formation, possible mitotic and cytokinetic mechanisms, and past distinctions between Mt arrays in higher plant somatic cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1615-6102
    Keywords: Cell division ; Confocal microscopy ; Convallaria majalis ; Generative cell ; Liliaceae ; Microtubules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The organization of the microtubule cytoskeleton in the generative cell ofConvallaria majalis has been studied during migration of the cell through the pollen tube and its division into the two sperm cells. Analysis by conventional or confocal laser scanning microscopy after tubulin staining was used to investigate changes of the microtubule cytoskeleton during generative-cell migration and division in the pollen tube. Staining of DNA with 4′,6-diamidino-2-phenylindole was used to correlate the rearrangement of microtubules with nuclear division during sperm cell formation. Before pollen germination the generative cell is spindle-shaped, with microtubules organized in bundles and distributed in the cell cortex to form a basketlike structure beneath the generative-cell plasma membrane. During generative-cell migration through the pollen tube, the organization of the microtubule bundles changes following nuclear division. A typical metaphase plate is not usually formed. The generative-cell division is characterized by the extension of microtubules concomitant with a significant cell elongation. After karyokinesis, microtubule bundles reorganize to form a phragmoplast between the two sperm nuclei. The microtubule organization during generative-cell division inConvallaria majalis shows some similarities but also differences to that in other members of the Liliaceae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1615-6102
    Keywords: Pollen tube ; Microtubules ; Cellular division ; Generative cell ; Sperm cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The microtubular cytoskeleton of the generative cell (GC) ofHyacinthus orientalis has been studied until the formation of the sperm cells (SCs). Immunofluorescence procedures in combination with confocal laser scanning microscopy (CLSM) has enabled the visualization of the organization of the microtubular cytoskeleton. Chemical fixation and freeze-fixation electron microscopy have been used to investigate the cytoskeleton and the ultrastructural organization of the GC and SCs. During pollen activation the GC is spindle-shaped. Microtubules (MTs) are organized as bundles and distributed in proximity of the GC plasmamembrane, forming a basket-like structure. Following migration through the pollen tube, the basket-like structure becomes more intertwined. During the nuclear division the MTs are involved in the segregation of the chromosomes and kinetochores are clearly discernible. Association with organelles is also observed. The chromosomes of the GC remain condensed until they separate in two sperm nuclei. The pre-prophase band was never observed. At the end of the GC division the microtubular network reorganizes in the two SCs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...