Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Arterial Hypotension ; Cerebral Blood Flow ; Oxidative Metabolism ; Non-hypoxic Lactacidosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary With the Kety-Schmidt-technique in ten dogs anaesthetized with 0.5% halothane, blood flow and oxidative metabolism of the brain were studied during stepwise lowering of CPP due to arterial hypotension at 71 and 41 torr. CBF remained constant (65.6 and 64.1 ml/100 g min) when CPP dropped from 98 to 71 torr, but at a CPP of 41 torr CBF fell to 32.2 ml/100 g min, i. e. to about 50% of the resting value. The CMR-oxygen did not change (4.20 and 4.38 ml/100 g min) when CPP was reduced from about 100 to about 70 torr, but decreased to 2.90 ml/100 g min, i. e. about 70% of the resting value in deep arterial hypotension. The uptake of glucose changed from 4.62 to 6.19 mg/100 g min as well as the output of CO2 and lactate (from 4.64 to 6.57 ml/100 g min and from 0.33 to 1.62 mg/100 g min) when CPP was decreased to 71 torr. It could be demonstrated that at this CPP range the oxidative metabolism was unchanged. It was assumed that the increased uptake of glucose was only to form lactate, and that this non-hypoxic lactate production was responsible for the elevated CO2 release. At a CPP range of 41 torr the metabolic rates of glucose and CO2 decreased to 3.33 mg/100 g min and to 3.37 ml/100 g min, respectively, while the output of lactate remained relatively high (1.14 mg/100 g min). These findings support the assumption that at a CPP range of 41 torr the oxidative metabolism of the brain becomes insufficient. All findings demonstrate close interactions between cerebral flow blood and oxidative brain metabolism in arterial hypotension. In deep arterial hypotension respiratory acidosis has an effect on CBF. The increase of CBF is accompanied by an improvement of CMR-oxygen but not of CMR-glucose. Although CMR-lactate is reduced, the lactate/glucose index remains high.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...