Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of scientific computing 6 (1991), S. 269-282 
    ISSN: 1573-7691
    Keywords: Front tracking ; subgrid resolution ; Godunov scheme ; underwater explosion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract The objective of this research is development of front tracking methods that possess subgrid resolution capability. One envisions here continuous tracking of the front, as opposed to discrete (one grid point to the next) tracking, such as is provided by the random choice method. A front tracking scheme employing near-front cells which continuously evolve with time is developed. This scheme is applied to the problem of tracking a material interface in the underwater explosion problem.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 363-368 
    ISSN: 0271-2091
    Keywords: Silencers ; Noise attenuation ; Shock flow ; Numerical simulation ; Gas dynamics ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The problem of attenuating the noise from weapons firing is studied experimentally and numerically. As a possible method of attenuating the noise significantly, a silencer with no internal baffles is attached to the M242 cannon. The internal pressures inside the muffler are measured. The near-field overpressures outside the muffler at various polar angles are also measured. A numerical simulation of the flow through the muffler is performed, using Harten's shock-capturing method to solve the Euler equations of ideal compressible flow. The numerical simulation yields a detailed picture of the flow field as displayed by the pressure and Mach contours. Pressure-time curves at selected locations are obtained and compared with experimental data. There is good agreement, except that the numerical simulation generates more vigorous oscillations.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...