Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Ca2+ transport ; Mg2+ transport ; Electron microprobe analysis ; Cortical thick ascending limb ; Furosemide ; Parathyroid hormone ; Paracellular shunt pathway permeability ; Tight junctions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Recent studies from our laboratory have shown that in the cortical thick ascending limb of Henle's loop of the mouse (cTAL) Ca2+ and Mg2+ are reabsorbed passively, via the paracellular shunt pathway. In the present study, cellular mechanisms responsible for the hormone-stimulated Ca2+ and Mg2+ transport were investigated. Transepithelial voltages (PDte) and transepithelial ion net fluxes (J Na, J Cl, J K, J Ca, J Mg) were measured in isolated perfused mouse cTAL segments. Whether parathyroid hormone (PTH) is able to stimulate Ca2+ and Mg2+ reabsorption when active NaCl reabsorption, and thus PDte, is abolished by luminal furosemide was first tested. With symmetrical lumen and bath Ringer's solutions, no Ca2+ and Mg2+ net transport was detectable, either in the absence or in the presence of PTH. In the presence of luminal furosemide and a chemically imposed lumen-to-bath directed NaCl gradient, which generates a lumen-negative PDte, PTH slightly but significantly increased Ca2+ and Mg2+ net secretion. In the presence of luminal furosemide and a chemically imposed bath-to-lumen-directed NaCl gradient, which generates a lumen-positive PDte, PTH slightly but significantly increased Ca2+ and Mg2+ net reabsorption. In view of the observed small effect of PTH on passive Ca2+ and Mg2+ movement, a possible interference of furosemide with the hormonal response was considered. To investigate this possibility, Ca2+ and Mg2+ transport was first stimulated with PTH in tubules under control conditions. Then active NaCl reabsorption was abolished by furosemide and the effect of PTH on J Ca and J Mg measured. In the absence of PDte and under symmetrical conditions, no Ca2+ and Mg2+ transport was detectable, either in the presence or absence of PTH. In the presence of a bath-to-lumen-directed NaCl gradient, Ca2+ and Mg2+ reabsorption was significantly higher in the presence than in the absence of PTH. Finally, when active NaCl transport was not inhibited by furosemide, but reduced by a bath-to-lumen-directed NaCl gradient, PTH strongly increased J Ca and J Mg, whereas only a small increase in PDte was noted. In conclusion, these data suggest that PTH exerts a dual action on Ca2+ and Mg2+ transport in the mouse cTAL by increasing the transepithelial driving force for Ca2+ and Mg2+ reabsorption through hormone-mediated PDte alterations and by modifying the passive permeability for Ca2+ and Mg2+ of the epithelium, very probably at the level of the paracellular shunt pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Parathyroid hormone ; Human calcitonin ; Transepithelial ion net fluxes ; Na+, Cl−, K+, Mg2+, Ca2+ transport ; Electron microprobe analysis-Mouse kidney ; In vitro microperfusion ; Cortical and medullary thick ascending limb of Henle's loop
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of parathyroid hormone (PTH) on transepithelial Na+, Cl−, K+, Ca2+ and Mg2+ transport was investigated in isolated perfused cortical thick ascending limbs (cTAL) and that of human calcitonin (hCT) was tested in both cortical and medullary thick ascending limbs (mTAL) of the mouse nephron. The transepithelial ion net fluxes (J x) were determined by electron probe analysis of the perfused and collected fluids. Simultaneously, the transepithelial voltage (PDte) and resistance (R te) were recorded. In cTAL segments, PTH and hCT significantly stimulated the reabsorption of Na+, Cl−, Ca2+ and Mg2+. hCT generated a net K+ secretion towards the lumen and PTH tended to exert the same effect. Neither PDte nor R te were significantly altered by either PTH or hCT. However, in the post-experimental period a significant decrease in PDte was noted. Time control experiments carried out under similar conditions revealed a significant decrease in PDte with time, which could have masked the hormonal response. In mTAL segments, Mg2+ and Ca2+ transport was close to zero. hCT did not exert any detectable effect on either PDte or J Cl −, J Na + J K +, J Mg 2+ and J Ca 2+ in these segments. In conclusion, our data demonstrate that PTH and hCT stimulate NaCl reabsorption as well as Mg2+ and Ca2+ reabsorption in the cTAL segment of the mouse. These data are in agreement with and extend data obtained in vivo in the rat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Glucagon ; Transepithelial ion net fluxes ; Na+, Cl−, K+, Ca2+, Mg2+ transport ; Electron microprobe ; Mouse kidney ; In vitro microperfusion ; Cortical and medullary thick ascending limb of Henle's loop ; In vivo micropuncture study
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of glucagon on transepithelial Na+, Cl−, K+, Ca2+ and Mg2+ net fluxes were investigated in isolated perfused cortical (cTAL) and medullary (mTAL) thick ascending limbs of Henle's loop of the mouse nephron. Transepithelial ion net fluxes (J Na +,J Cl −,J K +,J Ca 2+,J Mg 2+) were determined by electron probe analysis of the collected tubular fluid. Simultaneously the transepithelial voltage (PDte) and the transepithelial resistance (R te) were recorded. In cTAL-segments (n=8), glucagon (1.2×10−8 mol · l−1) stimulated significantly the reabsorption of Na+, Cl−, Ca2+ and Mg2+∶J Na + increased from 204±20 to 228±23 pmol · min−1 · mm−1,J Cl − from 203±18 to 234±21 pmol · min−1 · mm−1,J Ca 2+ from 0.52±0.13 to 1.34±0.30 pmol · min−1 · mm−1 andJ Mg 2+ from 0.51±0.08 to 0.84±0.08 pmol · min−1 · mm−1.J K+ remained unchanged: 3.2±1.3 versus 4.0±1.9 pmol · min−1 · mm−1. Neither PDte (16.3±1.5 versus 15.9±1.4 mV) norR te (22.5±3.0 versus 20.3±2.6 Ωcm2) were changed significantly by glucagon. However, in the post-experimental periods a significant decrease in PDte and increase inR te were noted. In mTAL-segments (n=9), Mg2+ and Ca2+ transports were close to zero and glucagon elicited no significant effect. The reabsorptions of Na+ and Cl−, however, were strongly stimulated:J Na + increased from 153±17 to 226±30 pmol · min−1 · mm−1 andJ Cl − from 151±23 to 243±30 pmol · min−1 · mm−1. The rise in NaCl transport was accompanied by an increase in PDte from 10.3±1.1 to 12.3±1.2 mV and a decrease inR te from 19.1±2.7 to 17.8±2.0 Ωcm2. No net K+ movement was detectable either in the absence or in the presence of glucagon. A micropuncture study carried out in hormone-deprived rats indicated that glucagon stimulates Na+, Cl−, K+, Mg2+ and Ca2+ reabsorptions in the loop of Henle. In conclusion our data demonstrate that glucagon stimulates NaCl reabsorption in the mTAL segment and to a lesser extent in the cTAL segment whereas it stimulates Ca2+ and Mg2+ reabsorptions only in the cortical part of the thick ascending limb of the mouse nephron. These data are in good agreement with, and extend, those obtained in vivo on the rat with the hormone-deprived model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 419 (1991), S. 472-477 
    ISSN: 1432-2013
    Keywords: Glucagon ; Transepithelial ion net fluxes ; Water, Na+, Cl−, K+, Mg2+, Ca2+, transport ; Electron microprobe ; Rat kidney ; In vivo micropuncture study
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of glucagon on water and electrolyte transport in the kidney were investigated on hormone-deprived rats, i.e. thyroparathyroidectomized diabetes insipidus Brattleboro rats infused with somatostatin. Glucagon consistently inhibited the reabsorption of water and Na+, Cl−, K+ and Ca2+ along the proximal tubule accessible to micropuncture, leaving the reabsorption of inorganic phosphate (Pi) untouched. In the loop, besides its previously described stimulatory effects on Na+, Cl−, K+, Ca2+ and Mg2+ reabsorption, glucagon strongly inhibited Pi reabsorption, very probably in the proximal straight tubule. These effects resulted in a significant phosphaturia and considerable reductions of Mg2+ and Ca2+ excretions. The effects of glucagon at both the whole kidney and the nephron levels are very similar to those previously described for calcitonin. In the absence of an adenylate cyclase system sensitive to glucagon and calcitonin in the rat proximal tubule, and from the analogy of their physiological effects with those elicited by parathyroid hormone, it is suggested that glucagon and calcitonin exert their inhibitory effects on Na and Pi reabsorption in the proximal tubule through another pathway, which could be the phosphoinositide regulatory cascade.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2013
    Keywords: Brattleboro ; Antidiuretic hormone ; Calcitonin ; Parathyroid hormone ; Glucagon ; Electrolyte ; Micropuncture ; Electron probe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of (1-desamino-8-d-arginine) vasopressin (dDAVP) on water and electrolyte transport in the distal tubule were investigated by micropuncture. Since, in addition to antidiuretic hormone, parathyroid hormone, calcitonin and glucagon stimulate the adenylate-cyclase system in this nephron segment, experiments were performed on hormone-deprived rats, i.e. homozygous DI Brattleboro rats with reduced levels of endogenous parathyroid hormone, calcitonin and glucagon. Along the distal tubule, dDAVP enhanced water, Cl, Na and Ca reabsorption and sharply increased net K secretion. Phosphate transport was left unchanged and Mg reabsorption was not significantly altered by dDAVP between the early and late distal tubule. Antidiuretic hormone also slightly increased water filtration rate in the superficial nephron, which rose in proportion to whole kidney glomerular filtration rate. It is concluded that, in rats: 1) antidiuretic hormone stimulates water, NaCl and Ca absorption and enhances K secretion along the distal tubule and 2) the tubular effects of dDAVP on electrolyte transport in the loop and distal tubule are responsible for decreasing Mg and Ca urinary excretion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...