Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta diabetologica 33 (1996), S. 236-240 
    ISSN: 1432-5233
    Keywords: Key words Non-obese-diabetic (NOD) mouse ; High protein diet ; Insulin secretion ; Perfusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Diet modifies the development of insulin-dependent diabetes mellitus in animals and in humans. We examined female non-obese-diabetic (NOD) mice, a diabetes-prone mouse strain with 70% spontaneous diabetes incidence and metabolic abnormalities in non-overtly diabetic litters. They were fed a diet containing 55% (n=27) or 15% (n=26) protein, respectively, after weaning. At an age of 30 weeks, non-diabetic NOD mice were submitted to an intravenous glucose tolerance test (0.5 g/kg body weight; blood samples were taken after 2, 4, 8, 10, 15, 20 and 30 min) and to perfusion of the pancreas (stimulation media were Krebs-Ringer-Hepes buffer with 5 mmol/l glucose, 30 mmol/l glucose and 5 mmol/l glucose plus 19 mmol/l arginine). Diabetic mice were removed from the experiment. Serum glucose concentration and body weight were monitored weekly. Food ingestion was checked at an age of 11 weeks. On average, the onset of diabetes was diagnosed in mice on a high-protein diet (19.7±1.3 weeks) 4 weeks earlier than in mice on a low-protein diet (23.5±1.1 weeks; P〈0.05). Non-diabetic NOD mice on a high-protein diet showed significantly better glucose tolerance (as determined by the glucose disappearance rate) and mean insulin secretion (at 30 mmol/l glucose). No difference in the serum glucose concentration between non-diabetic mice on the low-protein diet or high-protein diet could be proved. In non-diabetic mice on the high-protein diet the body weight and food ingestion exceeded those of mice on the low-protein diet (P〈0.05). High insulin secretion and glucose tolerance in non-diabetic mice may reflect the capacity of beta-cells to adapt; however, beta-cells tend to be destroyed under such circumstances. Thus, a high-protein diet promoted the onset of diabetes, but it did not increase significantly the incidence of the disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta diabetologica 33 (1996), S. 236-240 
    ISSN: 1432-5233
    Keywords: Non-obese-diabetic (NOD) mouse ; High protein diet ; Insulin secretion ; Perfusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Diet modifies the development of insulin-dependent diabetes mellitus in animals and in humans. We examined female non-obese-diabetic (NOD) mice, a diabetes-prone mouse strain with 70% spontaneous diabetes incidence and metabolic abnormalities in non-overtly diabetic litters. They were fed a diet containing 55% (n=27) or 15% (n=26) protein, respectively, after weaning. At an age of 30 weeks, non-diabetic NOD mice were submitted to an intravenous glucose tolerance test (0.5 g/kg body weight; blood samples were taken after 2, 4, 8, 10, 15, 20 and 30 min) and to perfusion of the pancreas (stimulation media were Krebs-Ringer-Hepes buffer with 5 mmol/l glucose, 30 mmol/l glucose and 5 mmol/l glucose plus 19 mmol/l arginine). Diabetic mice were removed from the experiment. Serum glucose concentration and body weight were monitored weekly. Food ingestion was checked at an age of 11 weeks. On average, the onset of diabetes was diagnosed in mice on a high-protein diet (19.7±1.3 weeks) 4 weeks earlier than in mice on a low-protein diet (23.5±1.1 weeks;P〈0.05). Non-diabetic NOD mice on a high-protein diet showed significantly better glucose tolerance (as determined by the glucose disappearance rate) and mean insulin secretion (at 30 mmol/l glucose). No difference in the serum glucose concentration between non-diabetic mice on the low-protein diet or high-protein diet could be proved. In non-diabetic mice on the high-protein diet the body weight and food ingestion exceeded those of mice on the low-protein diet (P〈0.05). High insulin secretion and glucose tolerance in non-diabetic mice may reflect the capacity of beta-cells to adapt; however, beta-cells tend to be destroyed under such circumstances. Thus, a high-protein diet promoted the onset of diabetes, but it did not increase significantly the incidence of the disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...