Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Pflügers Archiv 377 (1978), S. 33-42 
    ISSN: 1432-2013
    Schlagwort(e): Renal tubule ; Phosphate transport ; Extracellular pH ; Intracellular pH ; Acetazolamide
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract Inorganic phosphate (Pi) transport was evaluated using the standing droplet method with simultaneous microperfusion of the peritubular capillaries. To evaluate rather small differences in Pi transport and to eliminate the influence of tubular heterogeneity, the technique of crossed paired samples was applied. 1. In chronic PTX rat changing the luminal or both luminal and peritubular pH by varying the HCO 3 − -concentration between 4 and 50 mmol/l at constant 5% CO2 had no influence on Pi transport. 2. If, however, bicarbonate was omitted from the perfusate and 2 mmol/l phosphate (pH 7.4) was the only buffer, Pi transport was decreased from the control. It was, however, further reduced when the perfusates were gased with 5% CO2 i. e. the starting pH was 5.6. 3. When the solutions contained HEPES buffer (25 mmol/l), Pi transport at pH 8 was much larger than at pH 6.0. 4. Raising the CO2 pressure from 35 to 70 mm Hg did not change the Pi transport when both perfusates had a HCO 3 − -concentration of 25 mmol/l. It reduced, however, the Pi transport, when the luminal perfusate had only 4 mmol/l bicarbonate. 5. Lowering the CO2 pressure from 38 to 7.6 mm Hg did hardly change the Pi transport when the luminal perfusate contained 4 mmol/l bicarbonate. It lowered, however, the Pi transport significantly when the luminal perfusate had 25 mmol/l bicarbonate. 6. Acetazolamide, 10−4 M, lowered the Pi transport when the luminal perfusate contained 4 or 25 mmol/l bicarbonate. At 4 mmol/l luminal HCO 3 − , raising thepCO2 to 228 mmol/l depressed Pi transport even more. At 25 mmol/l luminal bicarbonate, raising thepCO2 from 38 to 114 mm Hg reversed the acetazolamide inhibition of the Pi transport almost completely. The data indicate that luminal acidosis and intracellular alkalosis inhibits the transtubular Pi transport. A shift of the intracellular pH to a more alkaline value seems to be responsible for the inhibition of Pi transport by acetazolamide, while omission of buffer from the perfusate inhibits Pi transport by effecting an acidic luminal pH.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Pflügers Archiv 375 (1978), S. 97-103 
    ISSN: 1432-2013
    Schlagwort(e): Renal tubule ; Phosphate transport ; Paracellular shunt ; Calcium ; Ca2+ ionophore A 23187
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract Proximal inorganic phosphate (P i ) transport was evaluated using the standing droplet method with simultaneous microperfusion of the peritubular blood capillaries. In chronic parathyroidectomized (PTX) rats addition of 3 μM of the Ca2+ ionophore A 23187 to the luminal perfusate had no effect on the P i transport, although the isotonic fluid reabsorption was reduced by 20%. When the Ca2+ concentration in the perfusates was raised from 1.5 mM to 3.0 mM the reabsorption did not change significantly. But when Ca2+ was omitted from the perfusates the P i reabsorption dropped by 19%, and when 2 mM EDTA were added to the perfusates P i transport decreased by 35%. The influx of P i from the interstitial space and from the cell into the phosphate-free luminal perfusate did not change, when the perfusates were Ca2+-free, but it increased by 23% in the presence of 2 mM EDTA. The data indicate that 1. a rise in intracellular Ca2+ above normal is not a factor which modifies “basal” P i transport i.e. when P i transport is independent of the action of parathyroid hormone. 2. A reduction of extracellular Ca2+ concentration from normal toward zero reduces P i transport without changing the paracellular leak permeability for P i . 3. With EDTA the paracellular leak permeability for P i is increased, thus causing an even greater reduction in net P i transport than with Ca2+-free solutions alone.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Pflügers Archiv 372 (1977), S. 269-274 
    ISSN: 1432-2013
    Schlagwort(e): Renal tubule ; Phosphate transport ; Parathyroidectomy ; Parathyroid hormone ; Phosphate diet
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The standing droplet method was applied in combination with microperfusion of the peritubular blood capillaries to determine the build up of transtubular concentration differences of phosphate (Pi) in proximal convoluted tubules. As revealed in experiments with chronic parathyroidectomized (PTX) rats, the time dependent decrease of the intraluminal Pi concentration, or increase of transtubular Pi concentration difference ( $$\Delta {\text{c}}_{{\text{P}}_i }$$ ), changes along the proximal convolution in a ratio 4:2:1 in the first quarter: second plus third quarter: fourth quarter. In acute (〉2 h) PTX rats $$\Delta {\text{c}}_{{\text{P}}_i }$$ decreased by 31% in the first and by 41% in the fourth quarter of the convolution when parathyroid hormone (PTH; 5 U initially and 12 U/h continuously) was infused. In chronic (〉2 days) PTX rats the correspondent values of 17% and 29% were significantly smaller. When the rats were kept for 7–11 weeks on a low phosphate diet (〈0,15% P in the dry matter) their Pi transport was in the range of that of the PTX rats. PTH infusion, however, diminished the P i reabsorption rate in the fourth quarter of the convolution only, but not that in the early parts of the convolution. On the contrary, rats kept for the same time on a high phosphate diet (2%) showed all along the proximal convolution one by one third of the phosphate transport rate of animals on a low phosphate diet. Acute parathyroidectomy of the high P diet rats led to 51% increase in P i transport. The data show that 1. the phosphate transport decreases as a function of proximal convolution length, 2. PTH exerts a considerable inhibitory effect on P i transport only in acute PTX rats, while the effect in chronic PTX rats is rather small, 3. the P content of the diet inversely correlates with the P i transport. 4. further with low P diet the PTH inhibits P i transport in late, but not in early segments of the proximal convolution.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Pflügers Archiv 360 (1975), S. 183-187 
    ISSN: 1432-2013
    Schlagwort(e): Renal tubule ; Phosphate transport ; pH dependence ; Micropuncture ; Microperfusion
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Early loops of the proximal convoluted tubule of parathyroidectomized rats (PTX-rats) were microperfused with a phosphate (4 mM) containing perfusate. With a perfusion solution of pH around 7.45 as estimated as anion deficit theP i reabsorption was two times greater than with a perfusion solution of pH around 6.85. TheP i reabsorption is reduced in PTX-rats made chronic alkalotic (PTX-cA-rats) but the same pH dependence ofP i reabsorption was found. The data indicate that the divalent phosphate is preferentially reabsorbed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Pflügers Archiv 418 (1991), S. 371-382 
    ISSN: 1432-2013
    Schlagwort(e): Corticosteroids ; Membrane transport ; Diffusion of corticosteroids ; Renal transport of p-aminohippurate and corticosteroids
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract Using the stop-flow peritubular capillary microperfusion method contraluminal transport of corticosteroids was investigated (a) by determining the inhibitory potency (apparent K i values) of these compounds against p-aminohippurate (PAH), dicarboxylate (succinate) and sulphate transport and (b) by measuring the transport rate of radiolabelled corticosteroids and its inhibition by probenecid. Progesterone did not inhibit contraluminal PAH influx but its 17α- and 6β-hydroxy derivatives inhibited with an app. Ki of 0.36 mmol/l. Introduction of an OH group in position 21 of progesterone, to yield 11-deoxycorticosterone, augments the inhibitory potency considerably (app. K i, PAH of 0.07 mmol/l). Acetylation of the OH-group in position 21 of 11deoxycorticosterone, introduction of an additional hydroxy group in position 17 α to yield 11-deoxycortisol or in position 11 to yield corticosterone brings the app. K i, PAH back again into the range of 0.2–0.4 mmol/l. Acetylation of corticosterone or introduction of a third OH group to yield cortisol does not change the inhibitory potency, but, omission of the 21-OH group or addition of an OH group in the 6β position reduces or abolishes it. Cortisol and its derivatives prednisolone, dexamethasone and cortisone exert similar inhibitory potencies (app. K i, PAH 0.12–0.27 mmol/l). But again, omission of the 21-OH group in cortisone or addition of a 6β-OH group reduces or even abolishes the inhibitory potency against PAH transport. The interaction of corticosterone was not changed when 11β, 18-epoxy ring (aldosterone) was formed. On the other hand, the interaction was considerably augmented if the 11-hydroxy group was changed to an oxo group in 11-dehydrocorticosterone (app. K i, PAH 0.02 mmol/l). When the A ring of corticosterone is saturated and reduced to 3α, 11β-tetrahydrocorticosterone the inhibitory potency is not changed very much. But if more than four OH or oxo groups are on the pregnane skeleton or if the OH in position 21 is missing, the inhibitory potency decreases drastically (app. Ki, PAH 0.7–1.7 mmol/l). Introduction of a 21-ester sulphate into corticosterone, cortisol and cortisone does not change app. K i, PAH very much. Glucuronidation, however, reduces it (app. Ki, PAH ≈ 1.2 mmol/l). None of the tested corticosteroids interacts, in concentrations applicable, with dicarboxylate transport and only the sulphate esters interact with sulphate transport. Radiolabelled cortisol, d-aldosterone, 11-dehydrocorticosterone, and corticosterone are rapidly transported into proximal tubular cells. With the latter three compounds no sign of saturation and no transport inhibition with probenecid could be seen. Only with cortisol was a shift toward saturation observed. In addition, cortisol transport could be inhibited by probenecid. The data indicate that corticosteroids interact with the contraluminal renal PAH transporter, whereby hydroxylation in position 21 augments, and hydroxylation in the 6β or 3α, 17β position reduces interaction. However, as tested so far, simple diffusion seems to prevail when corticosteroids cross the cell membrane. Sulphation makes corticosteroids also a substrate for the sulphate transporter.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1432-2013
    Schlagwort(e): Electron-attracting groups ; Electron-donating groups ; Hydrophobicity ; Corticosteroids ; Androstene analogues
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract In order to test what chemical structure is required for a substrate to interact not only with the contraluminal organic anion (p-aminohippurate, PAH) transporter, but also with the organic cation (N 1-methylnicotinamide, NMeN, or tetraethylammonium, TEA) transporter, the stop-flow peritubular capillary perfusion method was applied and app. K i values were evaluated. Zwitterionic hydrophobic dipeptides not only interact with PAH but also with NMeN transport although with lower inhibitory potency (K i,PAH=0.2–1.4; K i,NMeN 614 mmol/l). Amongst the zwitterionic cephalosporins, which all inhibit PAH transport, the amino cephalosporin analogue cefadroxil was identified to interact also with NMeN transport (K i,PAH = 3.0, K i,NMeN=11.2 mmol/l). All Zwitterionic naphthyridine and oxochinoline gyrase inhibitors tested inhibit NMeN transport with app. K i,NMeN values between 1.2 mmol/l and 4.7 mmol/l; the naphthyridine analogues show a good inhibitory potency against PAH transport (K i,PAH ≈ 0.4 mmol/l), the piperazine-containing quinolone analogues have a moderate inhibitory potency (K i,PAH=1.1–2.5 mmol/l) and the piperazine-containing pipemidic acid did not inhibit PAH transport at all. Zwitterionic thiazolidine carboxylate phosphamides also interact with both transporters (app. K i,PAH ≈ 3.0; app. K i,NMeN ≈ 18.0 mmol/l). The nonionizable oxo- and hydroxy-group-containing corticosteroid hormones also interact with the two transporters. (a) An OH group in position 21 is necessary for interaction with the PAH transporter, but not for interaction with the TEA transporter. (b) Introduction of an OH group in position 17α abolishes interaction with the TEA transporter, but has different effects with the PAH transporter. (c) Introduction of an OH group in position 6 abolishes interaction with both, the PAH and the TEA transporter. (d) A change of the side-group in position 11 of corticosterone from -OH to -H to=O enhances interaction with the PAH transporter but has no effect on the interaction with the TEA transporter. Nonionizable 4- or 5-androstene analogues inhibit both transporters with app. K i between 0.16 mmol/l and 0.64 mmol/l, if the steroids are soluble in a concentration greater than 1 mmol/l. Nonionizable oxazaphosphorins with more than one chloroethyl group interact with the PAH transporter with app. K i between 0.84mmol/l and 4.9mmol/l and with the NMeN transporter with app. K i between 3.2 mmol/l and 18.7 mmol/l. Thus a substrate interacts with both transporters if it is sufficiently hydrophobic, possesses acidic and/or electron-attracting plus basic and/or electron-donating groups, or possesses several electron-attracting nonionizable groups (O, OH, Cl). A certain spatial arrangement of the interacting groups seems to be necessary.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...