Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: C3-C4 intermediate species (Flaveria, Moricandia, Panicum) ; C4 evolution ; Glycine decarboxylase (localization) ; Photorespiration ; Serine hydroxymethyltransferase (localization)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cell-specific distribution of the four subunit proteins (P, L, T and H) of glycine decarboxylase (GDC) and of serine hydroxymethyltransferase (SHMT) has been studied in the leaves of C3-C4 intermediate and C4 species of three genera (Flaveria, Moricandia and Panicum) using immunogold localization. Antibodies raised against these proteins from pea leaf mitochondria were used to probe Western blots of total leaf proteins of F. linearis Lag., M. arvensis (L.) DC and P. milioides Nees ex Trin. (C3-C4), and F. trinervia (Spring.) Mohr and P. miliaceum (L.) (C4). For all species, each antibody recognised specifically a protein of similar molecular weight to that in pea leaves. In leaves of M. arvensis the P protein was present in the mitochondria of the bundle-sheath cells but was undetectable in those of the mesophyll, whereas the L, T and H proteins and SHMT were present in both cell types. The density of immunogold labelling of SHMT on the mitochondria of mesophyll cells was less than that on those of the bundle-sheath cells, which correlates with the relative activities of SHMT in these cell types. These data reveal that the lack of functional GDC in the mesophyll cells of M. arvensis, which is the principal biochemical reason for reduced photorespiration in this species, is due to the loss of a single subunit protein. This lack of coordinate expression of the subunit proteins of GDC within a photosynthetic cell represents a clear difference between M. arvensis and other C3 and C3-C4 species. None of the GDC proteins was detectable in the mesophyll cells of the C3-C4 and C4 Flaveria and Panicum species but all were present in the bundle-sheath cells. The differences in the distribution of the GDC proteins in leaves of the C3-C4 species studied are discussed in relation to the evolution of photosynthetic mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Brassica napus ; Moricandia arvensis ; Somatic hybridisation ; C3-C4 intermediate ; Photorespiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The wild crucifer Moricandia arvensis is a potential source of alien genes for the genetic improvement of related Brassica crops. In particular M. arvensis has a C3-C4 intermediate photosynthetic mechanism which results in enhanced recapture of photorespired CO2 and may increase plant water-use efficiency. In order to transfer this trait into Brassica napus, somatic hybridisations were made between leaf mesophyll protoplasts from cultured M. arvensis shoot tips and hypocotyl protoplasts from three Brassica napus cultivars, ‘Ariana’, ‘Cobra’ and ‘Westar’. A total of 23 plants were recovered from fusion experiments and established in the greenhouse. A wide range of chromosome numbers were observed among the regenerated plants, including some apparent mixoploids. Thirteen of the regenerated plants were identified as nuclear hybrids between B. napus and M. arvensis on the basis of isozyme analysis. The phenotypes of these hybrids were typically rather B. napus-like, but much variability was observed, including variation in flower colour, leaf shape and colour, leaf waxiness, fertility and plant vigour. CO2 compensation point measurements on the regenerated plants demonstrated that 3 of the hybrids express the M. arvensis C3-C4 intermediate character at the physiological level. Semi-thin sections through leaf tissues of these 3 plants revealed the presence of a Kranz-like leaf anatomy characteristic of M. arvensis but not found in B. napus. This is the first report of the expression of this potentially important agronomic trait, transferred from Moricandia, in M. arvensis x B. napus hybrids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...