Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 5 (1987), S. 83-90 
    ISSN: 1573-0662
    Keywords: Chlorine nitrate ; hydrogen chloride ; stratospheric chemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The gas-phase reaction of ClONO2 with HCl was investigated using two large-volume environmental chambers with analysis by in situ long pathlength Fourier transform infrared absorption spectroscopy. In these chambers the reaction was observed to proceed, at least in part, by heterogenous routes, and an upper limit to the rate constant for the homogeneous gas-phase reaction of geneous routes, and an upper limit to the rate constant for the homogeneous gas-phase reaction of $$k\left( {{\text{ClONO}}_{\text{2}} + {\text{HCl}}} \right) 〈 1.5 \times 10^{ - 19} {\text{ cm}}^{\text{3}} {\text{ molecule}}^{{\text{ - 1}}} {\text{ s}}^{{\text{ - 1}}}$$ Was derived at 298±2K. Assuming that this room-temperature upper limit to the rate constant is applicable to stratospheric temperatures, this homogeneous gas-phase reaction can be estimated to be of negligible importance as a ClONO2 loss process in the stratosphere.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 15 (1983), S. 1161-1177 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Relative rate constants for the gas-phase reactions of OH radicals with a series of cycloalkenes have been determined at 298 ± 2 K using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with isoprene of 9.60 × 10-11 cm3 molecule-1 s-1, the rate constants obtained were (X 1011 cm3 molecule-1 s-1): cyclopentene 6.39 ± 0.23, cyclohexene 6.43 ± 0.17, cycloheptene 7.08 ± 0.22, 1,3-cyclohexadiene 15.6 ± 0.5, 1,4 cyclohexadiene 9.48 ± 0.39, bicyclo[2.2.1]-2-heptene 4.68 ± 0.39, bicyclo[2.2.1] 2,5 heptadiene 11.4 ± 1.0, and bicyclo[2.2.2] 2 octene 3.88 ± 0.19. These data show that the rate constants for the nonconjugated cycloalkenes studied depend on the number of double bonds and the degree of substitution per double bond, and indicate that there are no obvious effects of ring strain energy on these OH radical addition rate constants. A predictive technique for the estimation of OH radical rate constants for alkenes and cycloalkenes is presented and discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 469-481 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Relative rate constants for the reaction of OH radicals with a series of branched alkanes have been determined at 297 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with n-butane of 2.58 × 10-12 cm3/molecule · s, the rate constants obtained are (× 1012 cm3/molecule · s): isobutane, 2.29 ± 0.06; 2-methylbutane, 3.97 ± 0.11; 2,2-dimethylbutane, 2.66 ± 0.08; 2-methylpentane, 5.68 ± 0.24; 3-methylpentane, 5.78 ± 0.11; 2,2,3-trimethylbutane, 4.21 ± 0.08; 2,4-dimethylpentane, 5.26 ± 0.11; methylcyclohexane, 10.6 ± 0.3; 2,2,3,3-tetramethylbutane, 1.06 ± 0.08; and 2,2,4-trimethylpentane, 3.66 ± 0.16. Rate constants for 2,2-dimethylbutane, 2,4-dimethylpentane, and methylclohexane have been determined for the first time, while those for the other branched alkanes are in generally good agreement with the literature data. Primary, secondary, and tertiary group rate constants at room temperature have been derived from these and previous data for alkanes and unstrained cycloalkanes, with the secondary and tertiary group rate constants depending in a systematic manner on the identity of the neighboring groups. The use of these group rate constants, together with a previous determination of the effect of ring strain energy on the OH radical rate constants for a series of cycloalkanes, allows the a priori estimation of OH radical rate constants for alkanes and cycloalkanes at room temperature.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 697-706 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The kinetics of the gas phase reactions of NO2 with a series of organics have been studied at 295 ± 2 K. It was observed that only 2,3-dimethyl-2-butene and the conjugated dialkenes studied reacted at observable rates, with rate constants which ranged from 1.5 × 10-20 cm3 molecule-1 s-1 for 2,3-dimethyl-2-butene to 1.3 × 10-17 cm3 molecule-1 s-1 for α-phellandrene. These rate constants are compared with the available literature data and the mechanisms of these reactions are discussed.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 14 (1982), S. 839-847 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Relative rate constants for the reaction of OH radicals with a series of ketones have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of hydroxyl radicals. Using a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10-12 cm3 molecule-1 s-1, the rate constants obtained are (× 1012 cm3 molecule-1 s-1): 2-pentanone, 4.74 ± 0.14; 3-pentanone, 1.85 ± 0.34; 2-hexanone, 9.16 ± 0.61; 3-hexanone, 6.96 ± 0.29; 2,4-dimethyl-3-pentanone, 5.43 ± 0.41; 4-methyl-2-pentanone, 14.5 ± 0.7; and 2,6-dimethyl-4-heptanone, 27.7 ± 1.5. These rate constants indicate that while the carbonyl group decreases the reactivity of C—H bonds in the α position toward reaction with the OH radical, it enhances the reactivity in the β position.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 17 (1985), S. 957-966 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Rate constants for the gas-phase reactions of NO3 radicals with a series of cycloalkenes have been determined at 298 ± 2 K, using a relative rate technique. Using an equilibrium constant for the NO2 + NO3 ⇄ N2O5 reactions of 3.4 × 10-11 cm3 molecule-1, the following rate constants (in units of 10-13 cm3 molecule-1 s-1) were obtained: cyclopentene, 4.52 ± 0.52; cycloheptene, 4.71 ± 0.56; bicyclo[2.2.1]-2-heptene, 2.41 ± 0.28; bicyclo[2.2.2]-2-octene, 1.41 ± 0.17; bicyclo[2.2.1]-2,5-heptadiene, 9.92 ± 1.13; and 1,3,5-cycloheptatriene, 12.6 ± 2.9. When combined with previous literature rate constants for cyclohexene and 1,4-cyclohexadiene, these data show that the rate constants for the nonconjugated cycloalkenes studied depend to a first approximation on the number of double bonds and the degree and configuration of substitution per double bond. No obvious effects of ring strain energy on these NO3 radical addition rate constants were observed. Our previous a priori predictive techniques for the alkenes and cycloalkenes can now be extended to strained cycloalkenes.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 18 (1986), S. 287-299 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Using a relative rate technique, rate constants for the gas-phase reactions of the OH radical with a series of monoterpenes have been determined in one atmosphere of air at 294 ± 1 K. Relative to a rate constant for the reaction of OH radicals with 2,3-dimethyl-2-butene of 1.12 × 10-10 cm3 molecule-1 sec-1, the rate constants obtained were (in units of 10-11 cm3 molecule-1 sec-1): α-Pinene, 5.45 ± 0.32; β-pinene, 7.95 ± 0.52; Δ3-carene, 8.70 ± 0.43; d-limonene, 16.9 ± 0.5; α-terpinene, 36.0 ± 4.0; γ-terpinene, 17.6 ± 1.8; α-phellandrene, 31.0 ± 7.1; myrcene, 21.3 ± 1.6; and ocimene (acis-, trans-mixture), 25.0 ± 1.9. These are the first quantitative kinetic data reported for many of these monoterpenes. The rate constants obtained are compared with the available literature data and with a priori estimates based on the number and configuration of substituents around the double bond(s). The tropospheric lifetimes of these monoterpenes with OH radicals, NO3 radicals and O3 are estimated and compared. Atmospheric lifetimes with respect to reaction with the OH radical are calculated to range from ∼0.75 hr for α-terpinene to ∼5 hr for α-pinene.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 20 (1988), S. 513-539 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The kinetics of the atmospherically important gas-phase reactions of acenaphthene and acenaphthylene with OH and NO3 radicals, O3 and N2O5 have been investigated at 296 ± 2 K. In addition, rate constants have been determined for the reactions of OH and NO3 radicals with tetralin and styrene, and for the reactions of NO3 radicals and/or N2O5 with naphthalene, 1- and 2-methylnaphthalene, 2,3-dimethylnaphthalene, toluene, toluene-α,α,α-d3 and toluene-d8. The rate constants obtained (in cm3 molecule-1 s-1 units) at 296 ± 2 K were: for the reactions of O3; acenaphthene, 〈5 × 10-19 and acenaphthylene, ca. 5.5 × 10-16; for the OH radical reactions (determined using a relative rate method); acenaphthene, (1.03 ± 0.13) × 10-10; acenaphthylene, (1.10 ± 0.11) × 10-10; tetralin, (3.43 ± 0.06) × 10-11 and styrene, (5.87 ± 0.15) × 10-11; for the reactions of NO3 (also determined using a relative rate method); acenaphthene, (4.6 ± 2.6) × 10-13; acenaphthylene, (5.4 ± 0.8) × 10-12; tetralin, (8.6 ± 1.3) × 10-15; styrene, (1.51 ± 0.20) × 10-13; toluene, (7.8 ± 1.5) × 10-17; toluene-α,α,α-d3, (3.8 ± 0.9) × 10-17 and toluene-d8, (3.4 ± 1.9) × 10-17. The aromatic compounds which were observed to react with N2O5 and the rate constants derived were (in cm3 molecule-1 s-1 units): acenaphthene, 5.5 × 10-17; naphthalene, 1.1 × 10-17; 1-methylnaphthalene, 2.3 × 10-17; 2-methylnaphthalene, 3.6 × 10-17 and 2,3-dimethylnaphthalene, 5.3 × 10-17. These data for naphthylene and the alkylnaphthalenes are in good agreement with our previous absolute and relative N2O5 reaction rate constants, and show that the NO3 radical reactions with aromatic compounds proceed by overall H-atom abstraction from substituent-XH bonds (where X = C or O), or by NO3 radical addition to unsaturated substituent groups while the N2O5 reactions only occur for aromatic compounds containing two or more fused six-membered aromatic rings.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 21 (1989), S. 801-827 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The aromatic ring-retaining products formed from the gas-phase reactions of the OH radical with benzene and toluene, in the presence of NOx, have been identified and their formation yields determined. These products, and their formation yields, are as follows: from benzene - phenol, 0.236 ± 0.044; nitrobenzene, {(0.0336 ± 0.0078) + (3.07 ± 0.92) × 10-16[NO2]}; from toluene - benzaldehyde, 0.0645 ± 0.0080; benzyl nitrate, 0.0084 ± 0.0017; o-cresol, 0.204 ± 0.027; m- + p-cresol, 0.048 ± 0.009; m-nitrotoluene, {(0.0135 ± 0.0029) + (1.90 ± 0.25) × 10-16[NO2]}, where the NO2 concentration is in molecule cm-3 units. The formation yields of o- and p-nitrotoluene from toluene were ca. 0.07 and 0.35 that of m-nitrotoluene, respectively. The observations that the nitro-aromatic yields do not extrapolate to zero as the NO2 concentration approaches zero are not consistent with current chemical mechanisms for these OH radical-initiated reactions, and suggest that under the experimental conditions employed in this study the hydroxycyclohexadienyl radicals formed from OH radical addition to the aromatic ring react with NO2 rather than with O2. However, these data concerning the nitroaromatic yields are consistent with our previous conclusions that many of the nitrated polycyclic aromatic hydrocarbons present in ambient air are formed, at least in part, in the atmosphere from OH radical reactions.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 23 (1991), S. 1003-1015 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The products of the reaction of the hydroxyl (OH) radical with methyl tert-butyl ether (MTBE) in NOx-air systems were identified and measured by Fourier transform infrared absorption spectroscopy and gas chromatography. The products observed, and their yields, were as follows: t-butyl formate, 76 ± 7%; formaldehyde, 37-1+6%; methyl acetate, 17 ± 2%, and acetone, 2.1 ± 0.9%, where the stated error limits represent both random (two standard deviations) and estimated systematic uncertainties. These products account for ca. 95% of the MTBE carbon reacted. Infrared absorption bands which may be due to small amounts of organic nitrate formation were observed, but organic nitrate yields could not be quantified. These data allow a chemical mechanism for the reaction of MTBE with the OH radical in the presence of NOx to be formulated.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...