Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physical Chemistry  (7)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 11 (1979), S. 613-619 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The thermal decomposition of SF5O3SF5 has been investigated between 5 and 25°C. In the presence of sufficient high pressures of O2 the only products formed are SF5O2SF5 and O2: \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm SF}_5 {\rm O}_3 {\rm SF}_5 { } \to { SF}_{5} {O}_{2} {SF}_{5} { + (}{\raise0.5ex\hbox{$\scriptstyle {1}$} \kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle {2}$}}{) O}_{2} {, }\Delta n{ = }{\raise0.5ex\hbox{$\scriptstyle {1}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} $$\end{document} The reaction is homogeneous. Its rate is strictly first order with respect to the trioxide pressure and independent of the total pressure of the reaction products and of oxygen above a certain limiting pressure: \documentclass{article}\pagestyle{empty}\begin{document}$$ - \frac{{{\rm d}[{\rm SF}_5 {\rm O}_3 {\rm SF}_5 ]}}{{{\rm dt}}}{ = + }\frac{{{\rm d}[{\rm SF}_5 {\rm O}_2 {\rm SF}_5 ]}}{{{\rm dt}}}{ = 2}\frac{{{dp}}}{{{\rm dt}}}{ = k[SF}_{5} {O}_{3} {SF}_{5} {]} $$\end{document} The experimental results can be explained with the following mechanism: In the presence of O2 〉 100 Torr the concentration of SF5 is insignificantly small. Therefore reactions (5) and (6) do not have to be considered any more, and steps (2) and (2′) will be of no importance. From reactions (1)-(4) it follows: \documentclass{article}\pagestyle{empty}\begin{document}$$ - \frac{{d[{\rm SF}_{\rm 5} {\rm O}_{\rm 3} {\rm SF}_{\rm 5} ]}}{{dt}} = + \frac{{d[{\rm SF}_{\rm 5} {\rm O}_{\rm 2} {\rm SF}_{\rm 5} ]}}{{dt}} = k_1 \frac{{[{\rm SF}_{\rm 5} {\rm O}_{\rm 3} {\rm SF}_{\rm 5} ]}}{{1 + k'_1 (1/2k_3 k_4 )^{1/2} }}k({\rm sec}^{{\rm - 1}}) = k_1 /\left[ {1 + k'_1 \left({\frac{1}{{2k_3 k_4 }}} \right)^{1/2} } \right] = 10^{16.06 \pm 0.37} {\rm exp( - 26,000} \pm {\rm 500}\,{\rm cal)/1}{\rm .987 }T $$\end{document}The numerical value of the factor [1 + (k′12/2k3k4)1/2] is small. It can be estimated that E3 ≃ 2 ± 1 kcal; therefore, E - E1 ≤ 1 kcal, and D (SF5O—O2SF5) = (26 - 1) ± 1.0 kcal.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 18 (1986), S. 907-917 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The kinetics of the gas phase reaction between NO2 and CF2CCl2 has been investigated in the temperature range from 50 to 80°C. The reaction is homogeneous. Three products are formed: O2NCF2CCl2NO2 and equimolecular amounts of CINO and of O2NCF2C(O)Cl. The rate of consumption of the reactants is independent of the total pressure, the reaction products, and added inert gases and can be represented by a second-order reaction: \documentclass{article}\pagestyle{empty}\begin{document}$$ - \frac{{d[{\rm NO}_{\rm 2}]}}{{dt}} = - 2\frac{{d[{\rm CF}_{\rm 2} {\rm CCI}_{\rm 2}]}}{{dt}} = k[{\rm NO}_{\rm 2}][{\rm CF}_{\rm 2} {\rm CCI}_{\rm 2}] $$\end{document}However, the distribution of the products is influenced by the pressure of the present gases, which favor the formation of the dinitro-compound in a specific way. The effect of CF2CCl2 is the greatest. In the absence of added gases, the ratio of O2NCF2CCl2NO2 to that of O2NCF2C(O)Cl is proportional to (CF2CCl2 + γP products).The experimental results can be explaned by the following mechanism: P and X represent the products and the added gases: \documentclass{article}\pagestyle{empty}\begin{document}$$ - \frac{{d[{\rm NO}_{\rm 2}]}}{{dt}} = - 2\frac{{d[{\rm CF}_{\rm 2} {\rm CCI}_{\rm 2}]}}{{dt}} = k_1 [{\rm NO}_{\rm 2}][{\rm CF}_{\rm 2} {\rm CCI}_{\rm 2}] $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ k_1 = 3.16 \pm 0.5 \times 10^6 \exp ( - 10500 \pm 1000{\rm cal/}RT){\rm M}^{{\rm - 1}} {\rm s}^{{\rm - 1}} $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm \gamma }_{{\rm CF}_{\rm 2} {\rm CCI}_{\rm 2} } :{\rm \gamma }_P :{\rm \gamma }_{{\rm C}_{\rm 2} {\rm F}_{\rm 5} {\rm CI}} :{\rm \gamma }_{{\rm CCL}_{\rm 3} } :{\rm \gamma }_{{\rm CF}_{\rm 4} } :{\rm \gamma }_{{\rm N}_{\rm 2} } = 1:0.22:0.15:0.14:0.054:0.015 $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm \gamma }_{{\rm NO}_{\rm 2} } 〈 0.01 $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ k_3 = 1.4 \pm 0.3 \times 10^8 {\rm s}^{{\rm - 1}} $$\end{document}
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 10 (1978), S. 111-116 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The thermal decomposition of F5SOOSF5, P, in the presence of CO has been investigated between 130.1° and 161.9°C at total pressures between 50 and 600 torr. The reaction is homogeneous, and the only final products formed are CO2 and S2F10. The rate of reaction is proportional to the pressure of P. The partial pressures of CO and O2 and the total pressure have no influence on the course of reaction: \documentclass{article}\pagestyle{empty}\begin{document}$$ - \frac{{d\left[P \right]}}{{dt}} = k\left[P \right] $$\end{document}The results are explained by the following mechanism:
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 103-115 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The kinetics of the thermal reaction between CF3OF and C3F6 have been investigated between 20 and 75°C. It is a homogeneous chain reaction of moderate length where the main product is a mixture of the two isomers 1-C3F7OCF3 (68%) and 2-C3F7OCF3 (32%). Equimolecular amounts of CF3OOF3 and C6F14 are formed in much smaller quantities. Inert gases and the reaction products have no influence on the reaction, whereas only small amounts of oxygen change the course of reaction and larger amounts produce explosions.The rate of reaction can be represented by eq. (I): The following mechanism explains the experimental results: Reaction (5) can be replaced by reactions (5a) and (5b), without changing the result: Reaction (4) is possibly a two-step reaction: \documentclass{article}\pagestyle{empty}\begin{document}$$ E_1 = 15.90 \pm 0.45{\rm kcal}\,{\rm mol}^{ - 1} $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ k_1 = \left( {7.60 \pm 0.68} \right)10^8 {\rm exp}\left( { - 15,900\,\, \pm \,\,450\,\,{{{\rm cal}} \mathord{\left/ {\vphantom {{{\rm cal}} {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} \right)M^{ - 1} \cdot s^{ - 1} $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ E^ * \, = \,12.30\, \pm \,0.25\,{\rm kcal}\,{\rm mol}^{ - 1} $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ k^ * \, = \,\left( {6.11\, \pm \,0342} \right)10^7 \,{\rm exp}\left( { - 12,300\, \pm \,250\,{{{\rm cal}} \mathord{\left/ {\vphantom {{{\rm cal}} {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} \right)M^{ - 1} \, \cdot \,{\rm s}^{ - 1} $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{*{20}c} {E^ * \, - \frac{1}{2}E_1 \, = \,4.35\,{\rm kcal}\, = \,E_3 \, - \,\frac{1}{2}E_4 ;} & {E_3 \,} \\ \end{array} 〉 \,4.35\,{\rm kcal} $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ \nu \,\left( {{\rm chain}\,{\rm length}} \right)\, = \,1 + \,\frac{{k_3 }}{{k_1 ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \left( {2k_4 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}\left( {\frac{{\left| {{\rm CR}_{\rm 3} {\rm OF}} \right|}}{{\left| {{\rm C}_{\rm 3} {\rm F}_{\rm 6} } \right|}}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} $$\end{document} For ∣CF3 = ∣C3F6∣, ν20°C = 36.8, ν50°C = 24.0, and ν70°C = 14.2.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 11 (1979), S. 1089-1096 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The thermal decomposition of SF5O3SF5 in the presence of CO has been investigated between -9.8°C and + 9.9°C. Besides traces of S2F10, equimolecular amounts of SF5O2SF5 and CO2 are formed. \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm SF}_{\rm 5} {\rm O}_{\rm 3} {\rm SF}_{\rm 5} {\rm + CO } \to {\rm SF}_{\rm 5} {\rm O}_{\rm 2} {\rm SF}_{\rm 5} {\rm + CO}_{\rm 2}{\rm,}\Delta _n {\rm = 0} $$\end{document} The reaction is homogeneous. Its rate is proportional to the pressure of the trioxide and in dependent of the total pressure, the pressure of inert gases and of carbon monoxide: \documentclass{article}\pagestyle{empty}\begin{document}$$ - {\rm }\frac{{d[{\rm SF}_5 {\rm O}_{\rm 3} {\rm SF}_5 ]}}{{dt}}{\rm = +}\frac{{d[{\rm SF}_5{\rm O}_{\rm 2} {\rm SF}_5 }}{{dt}} = {\rm}k[{\rm SF}_5 {\rm O}_{\rm 3}{\rm SF}_5 ] $$\end{document} where k = k1∞ = 1016.32±0.40 exp(-25,300 ± 500 cal)/RT sec-1. Consequently, \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm D}_{{\rm SF}_{\rm 5} {\rm O - O}_{\rm 2} {\rm SF}_{\rm 5}} {\rm =}25.3{\rm}\pm {\rm 0}{\rm .5 kcal} $$\end{document} In the presence of oxygen a sensitized CO2 formation is observed. A mechanism is given which explains the experimental results.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 13 (1981), S. 639-649 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The kinetics of the thermal decomposition of CF3O3CF3 has been investigated in the pressure range of 15-599 torr at temperatures between 59.8 and 90.3°C and also in the presence of CO between 42 and 7°C. The reaction is homogeneous. In the absence of CO the only reaction products are CF3O2CF3 and O2. The rate of reaction is strictly proportional to the trioxide pressure, and is not affected by the total pressure, the presence of inert gases, and oxygen. \documentclass{article}\pagestyle{empty}\begin{document}$$ -\frac{{d[{\rm CF}_{\rm 3} {\rm O}_{\rm 3} {\rm CF}_{\rm 3}]}}{{dt}} = 2\frac{{dp}}{{dt}} = k[{\rm CF}_{\rm 3} {\rm O}_{\rm 3}{\rm CF}_{\rm 3}] $$\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$$ k = 2.25 \pm 0.18 \times 10^{15} \exp (- 30,530 \pm 130\,{\rm cal}/RT)s^{ - 1} $$\end{document}The following mechanism explains the experimental results: In the presence of CO there appear CO2, (CF3OCO)2, and CF3O2C(O)OCF3 as products. With increasing temperature the amount of peroxicarbonate decreases, while the amounts of oxalate and CO2 increase. The rate of decomposition of the trioxide above a limiting pressure of about 10 torr CO is strictly first order and independent of CO pressure, total pressure, and the pressure of the products. \documentclass{article}\pagestyle{empty}\begin{document}$$ - \frac{{d[{\rm CF}_{\rm 3} {\rm O}_{\rm 3} {\rm CF}_3]}}{{dt}} = k*[{\rm CF}_{\rm 3} {\rm O}_{\rm 3} {\rm CF}_{\rm 3}] $$\end{document} The addition of larger amounts of O2 to the CO containing system chaqnges the course of the reaction.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 17 (1985), S. 43-53 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The kinetics of the thermal reaction between SF4, and CF3OF has been studied between 142°C and 185°C. The reaction was found to be homogeneous and the only products formed are equimolecular amounts of SF6 and CF3O2CF3 and smaller amounts of CF3OSF5. The reaction mechanism was not affected by the total pressure, the oxygen pressure, or by the buildup of products. The experimental data can be explained by the following mechanism: The rate constants can be expressed as \documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{lr} k_1 = (4.58 \pm 0.30) \times 10^7 \,{\rm exp( - 18900} \pm {\rm 1000}\,{\rm cal/}RT)M^{ - 1} \,{\rm s}^{{\rm - 1}} \\ k_2 = (3.88 \pm 0.30) \times 10^9 \,{\rm exp( - 9800} \pm {\rm 1000}\,{\rm cal/}RT)M^{ - 1} \,{\rm s}^{{\rm - 1}} \end{array} $$\end{document}
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...