Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (33)
  • Polymer and Materials Science  (33)
Source
  • Articles: DFG German National Licenses  (33)
Material
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Makromolekulare Chemie 240 (1996), S. 67-81 
    ISSN: 0003-3146
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Standard epoxy resins have good mechanical properties, but their prolonged low temperature curing time limits their potential use in clinical applications as well as in many industrial applications. A fast-curing epoxy-episulfide resin has been developed. The gel time of epoxy-episulfide made from EPONTrade mark of Shell Chemical Company. 828 ranges from 2 to 10 minutes by changing the ratio of the ingredients. The heat of reaction of this system is low, resulting in low cure shrinkage. Water absorption of the episulfide network is low. The epoxy-episulfide system cured with polyamide curing agent V-40 exhibits two transition temperatures, at about 85°C and 130°C, as shown in dynamic mechanical analysis data. In order to solve the long term stability problem of the above episulfides, and also the mixing problem, a lower viscosity resin, Eponex, was used to make Eponex-sulfide. Eponex-sulfide systems show promise in that they remain in a stable liquid form without epoxy. The other advantages appear to be retained.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 7 (1969), S. 1033-1057 
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The phenomenon of double melting, as manifested by two characteristic endotherms in the melting region on a differential thermal analysis (DTA) scan, has been studied in nylon 66 and polystyrene as a function of sample treatment by annealing or drawing. A variety of techniques were used in these studies including DTA, x-ray diffraction, electron microscopy, and mechanical testing. It is shown that the two endotherms are not caused by a bimodal crystal size distribution, by recrystallization, by orientation changes, or by phase changes. It is proposed that one endotherm is caused by the melting of foldedchain crystals, while the other is due to the melting of less perfect bundle crystals. This view is well supported by the results, especially by the DTA measurements made at different heating rates. Published data on the thermal behavior of annealed and drawn poly(ethylene terephthalate) and on polyethylene crystallized at various pressures may also be explained on this basis if it is allowed that in polyethylene the chains may be more extended.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 21 (1977), S. 1095-1102 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The variability in adhesive bond strength and extent of cure of room-temperature, amine-cured epoxy resins has limited their applications. This paper reports the observation of microscopic crystal formation at the interface of the resin with air, resulting in a variably lower resin curing rate, extent of cure, and up to ten times lower adhesive bond strength. These crystals were identified as an amine bicarbonate salt, resulting from the reaction of the amine at the surface of the curing mixture with air. The bicarbonate formation seems to be general for the types of hardeners used in room-temperature curing. The amine-bicarbonate compound can be decomposed back to the amine by heating above 80°C. Otherwise, exposure of room-temperature systems to air before bonding is undesirable.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 30 (1985), S. 1875-1891 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Our limited success in toughening methylene dianiline (MDA)-cured Epon 828, using varying rubber types, led to a study of the role of the matrix viscoelasticity in the toughening process. Two rubber types, with different interfacial bonding capabilities, poly(n-butyl acrylate)/15 wt % acrylonitrile/2 wt % acrylic acid and poly(n-butylacrylate)/15 wt % acrylonitrile, were incorporated into systems containing varying amine concentrations to control crosslink density. Impact strengths of controls and rubber-modified compositions increased with excess amine concentrations up to 70%. The impact strengths for the poly(n-butyl acrylate)/15 wt % acrylonitrile/2 wt % acrylic acid rubber-modified compositions were greater than their equivalent controls, with the effect being greater at a lower crosslink density. This study confirmed that the matrix viscoelasticity is the controlling parameter in the toughening process. The degree of rubber-epoxy interfacial bonding is also an important parameter to consider, if the matrix viscoelasticity permits toughening. A modified stress response model was used to explain the toughening phenomenon.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 26 (1988), S. 247-254 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Diepoxides and in-chain carbonate groups react readily in the presence of quarternary ammonium salts, although reaction is not observed without this catalyst. Two moles of epoxide react with each mole of carbonate. When diepoxides and polycarbonates are reacted, a three-dimensional network of chains crosslinked with carbonate groups is produced; the crosslink density is controlled by adjusting the epoxy/carbonate ratio. Tertiary amines and alkoxides also catalyze the epoxy/carbonate reaction, but these have the undesirable attribute of promoting epoxy polymerization. The presence of oligocarbonates accelerates the epoxy-amine reaction.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 34 (1996), S. 2103-2116 
    ISSN: 0887-624X
    Keywords: epoxy ; polycarbonate ; transesterification ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An epoxy resin based upon the diglycidyl ether of bisphenol-A was modified with poly(bisphenol A carbonate) (PC). Prior to aromatic amine cure, the possible reactions in the epoxy resin/PC blend were investigated using GPC and FTIR techniques. It was shown that at 150°C, the epoxy resin acted as a plasticizer and promoted the crystallization of PC. In addition, a transesterification between the secondary hydroxyl groups in the epoxy resin with the carbonate groups in PC occurred. This reaction resulted in degraded PC chains with phenolic hydroxyl end groups. There was no evidence of reaction of epoxide groups at 150°C in this blend. At 200°C, the secondary hydroxyl groups acted as a catalyst converting most of the aromatic-aromatic carbonates to the aromaticndash;liphatic and aliphaticndash;aliphatic carbonates through transesterification. At this elevated temperature, the secondary hydroxyl groups were regenerated by the addition reaction between the epoxide groups and the phenolic hydroxyl end groups, either from the transesterification or the hydrolysis of PC. This addition reaction combining the PC chains and epoxy chains eventually resulted in a crosslinked polymer if the extent of reaction was high. Thus, by using a melt blending process at high temperature, e.g., 200°C, a copolymer network structure of PC-modified epoxy could be formed. The fracture toughness should be increased by increasing the capability for plastic deformation due to the incorporation of PC chains into the network; results will be reported in a future study. © 1996 John Wiley & Sons, Inc.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 10 (1972), S. 1273-1283 
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The two endotherms found during DSC analysis of annealed or drawn poly(ethylene terephthalate), PET, are discussed in greater. detail. Earlier workers proposed that the endotherms were the result of separate morphologies, i.e., extended-chain and folded-chain crystals, but more recently Roberts and others have presented data on the effect of DSC heating rate on annealed PET endotherm areas which indicate that the higher temperature endotherm is the result of recrystallization in the DSC. The present work explains the reasons for recrystallization, and presents data showing that samples cooled at various rates from the melt also exhibit recrystallization in the DSC, in much the same manner as samples annealed for different lengths of time. Further, by prolonged annealing before analysis, part of the recrystallization exotherm can be observed in the DSC scan. Drawn nylon 66 also exhibits recrystallization in the DSC, in a manner similar to annealed or slowly crystallized PET. The amount of material that recrystallizes is determined by the time and supercooling available between first melting and the ultimate recrystallization temperature, i.e., a temperature at which there is too little time and temperature driving force for further recrystallization to occur. Infrared absorption data show an increase in “regular” fold content during prolonged annealing of PET, while dynamic mechanical data show a marked decrease in a dispersion that is likely associated with the looser fold crystal morphologies. Annealed PET does superheat in the DSC, leaving unanswered the question as to whether any partially extended material is present along with the regular-fold material. For cold-drawn PET, the infrared data indicate disappearance of regular folds and the dynamic mechanical data indicate disappearance of the looser folds. Cold-drawn PET also superheats. These data indicate a likelihood of at least partially extended morphologies in cold-drawn PET; these observations do not apply to PET drawn at high temperatures or to polyethylene.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 49 (1993), S. 583-592 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Electropolymerization of N,N-dimethylacrylamide has been performed in aqueous sulfuric acid solution, using unsized AS-4 graphite fibers as the working electrode. The electro-polymerized poly (N,N-dimethylacrylamide) deposited on the surface of the graphite fiber working electrode. The formation of poly (N,N'dimethyl acrylamide) was inhibited by hydroquinone. The addition of about 0.05 moles of hydroquinone to the reaction solution resulted in about a 90% decrease in the weight gain of fibers, in agreement with the proposed free radical mechanism of aqueous electropolymerization. The rate of electropolymerization varied with the initial monomer concentration, current density, and sulfuric acid concerntration, raised to the power of 1.3, 0.42, and 0.07, respectively, that is, Rp ∝ [M]1.3-Cd0.42 [H2SO4]0.07. A mathematical model, based upon free radical polymerization kinetics, is discussed. © 1993 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 43 (1991), S. 2237-2247 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Constant current electropolymerization of acrylamide was initiated on the surfaces of AS-4 graphite fibers. Electropolymerization was performed using an aqueous solution of acrylamide dissolved in dilute sulfuric acid solution. The progress of electropolymerization was followed by measuring the weight of polyacrylamide deposited onto the surfaces of a unit weight of graphite fiber per unit time. The rate of electropolymerization was obtained from the slope of the linear region of the polymer weight gain vs. electropolymerization time curve. The rate of electropolymerization onto AS-4 graphite fiber surfaces was found to depend on the initial monomer concentration, sulfuric acid concentration, and current density raised to the powers of 1.67, 0.02, 0.54, respectively. Molecular weight measurements on the electropolymerized polyacrylamide were done by solution viscometry. Number average molecular weights of 430,000, 220,000, and 193,000 were obtained for polyacrylamide, electropolymerized at 1 mA/g, 50 mA/g, and 100 mA/g respectively, consistent with classical radical polymerization kinetics.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 6 (1968), S. 1773-1781 
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Either of the two endothermic melting peaks found by differential thermal analysis of nylon 66 may be converted to the other by appropriate choice of annealing conditions. The two peaks are considered due to the melting of two morphological species, forms I and II. Form I is relatively fixed in melting temperature, while the form II melting temperature varies with annealing conditions and can be either above or below form I. The two forms can be distinguished by whether or not the conversion I → II takes place; if the sample is in form II no change in the thermogram is observed under suitable conversion conditions. The conversion of form I to form II also takes place during cold drawing. It has been previously shown that form I results from rapid cooling from the melt, and form II results from slow cooling. Form I appears to be kinetically favored, while form II is thermodynamically preferred. The variability in the form II melting point is attributed to variable crystal size and/or perfection.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...