Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1950-1954  (124)
  • Polymer and Materials Science  (124)
Material
Years
Year
  • 1
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: An exploratory investigation of the kinetics of the polymerization of chlorotrifluoroethylene (I) has been made. Experiments were conducted in bulk, in solution in several solvents, and in the presence of several comonomers. Acetyl peroxide (II) was found to be the most effective of common initiators and was used in most of the experiments. The sealed empoule technique was employed. The bulk polymerization of I is zero order to 60-80% conversion; the rate varies as the 0.7 to 0.8 power of the acetyl peroxide concentration, and the over-all activation energy is 17 kcal./mole. The solution polymerization in benzene appears to be first order in monomer; in other solvents the order was not ascertained. The rate and activation energy in solution are solvent dependent and there appears to be an inverse relationship between the rate of polymerization of I in a solvent and the rate of decomposition of II in that solvent. The rate of decomposition of II was measured in a number of solvents and found to vary widely and to parallel, roughly, the rate of decomposition of benzoyl peroxide. The polymerization rate of I in solution is also c. 0.7 order in acetyl peroxide, but was 0.5 order in Porofor N in limited experiments. From copolymerization experiments with styrene, vinyl acetate and methyl methacrylate values of Q of 0.025, 0.025, and 0.016, and of e of 1.4, 2.0, 1.4, respectively, were inferred, in the Q-e scheme of Alfrey and Price. These results above are discussed in the light of polymerization theory.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Polymer Science 7 (1951), S. 243-260 
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A new method for the photochemical initiation of polymerization of vinyl compounds in aqueous solution is described. The photochemically active species is an ion pair complex of the formula Fe3+X-(X- = OH-, CI-, N-3, etc.). The light absorption by the ion pair leads to an electron transfer causing reduction of the cation and oxidation of the anion to an atom or free radical X. The latter leads to the initiation of polymerization in accordance with X + CH2=CHR→XCH2—CHR—. The kinetics of the reaction were studied by the measurement of: (a) ferrous ion formed (colorimetrically), (b) monomer disappearance (by titration and by weighting the polymer), (c) the chain length of the polymer (in the case of methyl methacrylate). The dependence of the quantum yield on the light intensity, light absorption fraction, and the concentration of vinyl monomer and ferrous ion added initially was investigated. A complete mechanism, both with regard to the formation of free radicals and the polymerization reaction, was put forward involving: (1) light absorption, (2) a primary dark back reaction, (3) dissociation of the primary product, (4) a secondary dark back reaction, (5) initiation of polymerization by free radicals, (6) propagation of polymerization, and (7) termination by recombination of active polymer endings. The mechanism was verified by the experimental results and some constant ratios were estimated quantitatively.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim [u.a.] : Wiley-Blackwell
    Materials and Corrosion/Werkstoffe und Korrosion 5 (1954), S. 301-308 
    ISSN: 0947-5117
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: The Behaviour of Silver Anodes in Cyanide BathsSilver can be mechanically passivated in potassium cyanide and potassium silver cyanide baths by anodic treatment. The process follows the Müller-Machu Time Law of Covering Passivity: the complete covering of the surface of the electrode with a brownish layer of silver oxide and silver cyanide coincides with a rapid drop on current potential at the commencement of passivity. The marked drop in current potential is, at the same time accompanied by a marked increase in the silver potential. The passivating covering layers are easily soluble in electrolytes having a sufficient free cyanide content. With increasing KGN content, the commencement of passivity is rendered more difficult, hence the solubility of the silver anode is facilitated.The quantative relation between the free KCN content and the specific constant of passivation B was determined for the various electrolytes in common use. In order to retain the same time of passivation and the identical solubility of the silver anodes, the anodic current strength must be kept proportional to the free KCN content. The commencement of passivity is facilitated to a certain extent by the increase in silver content in the form of KAg(CN)2·K2CO3 has practically no effect on the solubility of the anodes.
    Notes: Silber kann in Kaliumcyanid- und Kaliumsilbercyanidlösungen bei anodischer Behandlung mechanisch passiviert werden. Der ablaufende Vorgang gehorcht dem Zeitgesetz der Bedeckungspassivität von Müller-Machu; gleichzeitig mit dem schnellen Abfall der Stromstärke erfolgt bei Eintritt der Passivität die vollständige Bedeckung der Elektrodenoberfläche mit einer bräunlichen Schicht von Silberoxyd und Silbercyanid. Der starke Stromstärkeabfall ist gleichzeitig mit einem größeren Anstieg des Silberpotentials verbunden. Die passivierende Deckschicht ist in Elektrolyten mit einem genügenden Gehalt an freiem Cyanid leicht löslich. Mit zunehmendem Gehalt an freiem KCN wird also der Eintritt der Passivität erschwert, die Löslichkeit der Silberanoden also erleichtert.Die quantitative Beziehung zwischen dem Gehalt an freiem KCN und der spezifischen Passivierungskonstanten B wurde für die verschiedenen, in der Praxis üblichen Elektrolyten festgestellt. Um die gleiche Passivierungszeit, bzw. die gleiche Löslichkeit der Silberanoden zu erhalten, ist die anodische Stromdichte proportional dem Gehalt an freiem KCN zu wählen. Der Eintritt der Passivität wird dagegen mit zunehmendem Silbergehalt als KAg(CN)2 gewissermaßen erleichtert. K2CO3 hat praktisch keinen Einfluß auf die Löslichkeit der Anoden.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim [u.a.] : Wiley-Blackwell
    Materials and Corrosion/Werkstoffe und Korrosion 5 (1954), S. 129-136 
    ISSN: 0947-5117
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: On the Behaviour of Zinc Anodes in Cyanide BathsAfter determination of the degree of cover obtained with zinc anodes in sodium cyanide and sodium-zinc-cyanide, solutions it was shown that a stable covering layer is formed in these solutions as a result of the reciprocal action of the electrolytes. This surface layer immediately disappears when subjected to all forms of activating and passivating treatment. The surface layer is at a maximum in pure sodium-zinc solutions, which have the least solvent effect on zinc cyanide. These surface layers disappear when large quantities of free sodium cyanide and sodium hydroxide are added. However, they are still present to a certain extent in solutions of maximum concentration.There is an exponential relationship between the effect of the addition of sodium cyanide or sodium hydroxide on the tendency of the zinc anodes to become passive and the degree of concentration of the ingredients of the bath, whilst a linear relationship exists between the latter and the are of the pores.Zinc cathodes show a concentration polarisation and a strong chemical polarisation, whilst zinc anodes in their active state and in free sodium cyanide solutions have the least capacity for polarisation of all the cyanide solutions under investigation. The greater the quantity of of fre NaCN, the less is the degree of polarisation evidenced by the active zinc anodes. Passive zinc anodes show the highest degree of polarisation, i. e., a pure surface layer polarisation.
    Notes: Durch Ermittlung des Bedeckungsgrades von Zinkanoden in Natriumcyanid- und Natriumzinkcyanidlösungen verschiedener Zusammensetzung wird gezeigt, daß sich in diesen Lösungen durch Wechselwirkungen mit dem Elektrolyten eine stabile Deckschicht ausbildet, die sich bei allen Aktivierungs- und Passivierungsbehandlungen gleichmäßig wieder ausbildet. Diese Bedeckung ist am größten in reinen Natriumzinkcyanidlösungen, die das geringste Lösungsvermögen für Zinkcyanid besitzen. Durch größere Zusätze von freiem Natriumcyanid und Natriumhydroxyd verschwinden diese Deckschichten immer mehr, bleiben aber bis zu einem gewissen Ausmaß auch in den konzentriertesten Lösungen erhalten.Zwischen der Wirkung eines Natriumcyanid- oder Natriumhydroxydzusatzes auf die Neigung der Zinkanoden, passiv zu werden, besteht eine exponentielle, zwischen der freien Porenfläche und der Konzentration der Badbestandteile eine lineare Proportionalität.Zinkkathoden zeigen Konzentrationspolarisation und eine starke chemische Polarisation, Zinkanoden sind im aktiven Zustand und zwar in reinen Natriumcyanidlösungen am geringsten von allen untersuchten Cyanidlösungen polarisierbar. Je größer die Menge an freiem NaCN ist, eine um so geringere Polarisation weisen die aktiven Zinkanoden auf. Passive Zinkanoden zeigen die stärkste Polarisation, nämlich eine reine Deckschichtenpolarisation.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Polymer Science 11 (1953), S. 325-352 
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The steady state method is applied to the benzoyl peroxide initiated polymerization of styrene in toluene at 80°C. The reaction mixture is kept homogeneous by stirring. A theoretical discussion shows that the time needed to reach the steady state concentrations with an accuracy of 1% or better is about seven times the average time which the mixture spends in the reaction vessel; this is confirmed by experiment. The experimental results show that the rate of polymerization can be represented by the formula: \documentclass{article}\pagestyle{empty}\begin{document}$$ - dm/dt = kmE^{1/2} ;E = \beta m(1 + \beta m)^{- 1} $$\end{document} where m is the monomer concentration, while k and β are constants. It is found that β = 1.19 liter/mole. The apparent order of the reaction, with respect to monomer, increases from 1.18 when m = 1.8 mole/liter to 1.36 when m = 0.4 mole/liter. An analysis of the limits of experimental error indicates that in the conventional method this change in apparent reaction order would have been of the same order of magnitude as the experimental error. The accuracy of the steady state method, however, is sufficient to establish this change unambiguously. Numerous data from the literature concerning the polymerization of styrene and other monomers are discussed, and are found to be in good agreement with the conclusions reached in the present work. Explanations are offered for a number of discrepancies found in the literature.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The persulfate-initiated polymerization of allyl acetate has been studied at 70°C. in the absence and in the presence of sodium lauryl sulfate. In the absence of the detergent a polymer of molecular weight about 800 is formed from initially homogeneous reaction mixtures at an initial rate approximately proportional to concentration of persulfate and approximately independent of concentration of monomer. The ratio of the initial rates of disappearance of allyl acetate and persulfate is about 14, corresponding to the ratio calculated from the molecular weight. With a separate phase of monomer the molecular weight is about 1000. The addition of the detergent does not increase the rate of initiation or affect the molecular weight of the polymer formed in innitially homogeneous media, although the rate of polymerization is increased somewhat. With a separate phase of monomer the polymer formed in the presence of detergent has a molecular weight of about 1300.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Weinheim [u.a.] : Wiley-Blackwell
    Materials and Corrosion/Werkstoffe und Korrosion 4 (1953), S. 356-357 
    ISSN: 0947-5117
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Weinheim [u.a.] : Wiley-Blackwell
    Materials and Corrosion/Werkstoffe und Korrosion 5 (1954), S. 11-17 
    ISSN: 0947-5117
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: On the Passivity of Thallium in Perchloric Acid, Sodium Chloride and Sodium Sulphide SolutionsWhilst only a single rapid drop in potential could be observed in the case of solutions of perchloric acid and sodium sulphate, two successive drops in current potential were observed with electrolytes containing chlorine ions. This proves that two different phases occur in passivity. The Muller-Machu Time Law of Covering Passivity was found to hold good for both drops in potential, which points to a mechanical passivity of Thallium caused by covering layers.Measurements of the current potential showed that the anodic behavior of Thallium is characterised by two values, Tl+ and Tl3+. It was found that, in all the electrolytes examined, the Thallium is the first to be converted to Tl+ in solution. This action is independent of current potential. This action may have a duration of only a few seconds (e.g., in the case of 0,48 n HClO4) or several minutes (as in the case of solutions containing chlorine ions). The duration of this action depends on the current potential and the particular electrolyte used. During the primary phase of the passivating action the passivating surface layer also consists of a Thallium-1-compound. The continued passage of current causes a transformation of the metal at the passive anode, which then once again dissolves to the accompaniment of an emission of Tl3+ -Ions. At this stage a second mechanical passivation by a covering layer of a Thallium-III-salt occurs. It therefore follows that all types of passivity only depend upon the formation of covering layers.
    Notes: Während in Perchlorsäurelösungen und Natriumsulfatlösungen nur ein einziger schneller Abfall der Stromstärke beobachtet werden konnte, wurden in den Chlorionen enthaltenden Elektrolyten zwei aufeinander folgende Stromstärkeabfälle festgestellt. Dies beweist, daß zwei verschiedene Stadien der Passivität auftreten. Das Zeitgesetz der Bedeckungspassivität von Müller-Machu wurde für beide Stromstärkeabfälle als streng gültig gefunden, was auf eine mechanische Passivität des Thalliums durch Deckschichten hinweist.Durch Potentialmessungen konnte gezeigt werden, daß das anodische Verhalten des Thalliums durch sein Auftreten in zwei Wertigkeitsstifen, nämlich Tl+ und Tl3+ gekennzeichnet ist. In allen untersuchten Elektrolyten geht das Thallium zunächst und unabhängig von der angewandten Stromdichte als Tl+ in Lösung. Dieser Vorgang kann, je nach der angewandten Stromdichte und dem benutzten Elektrolyten, nur einige Sekunden (z. B. in 0,48 n HClO4) oder bis mehrere Minuten (in Chlorionen enthaltenden Lösungen) dauern. Auch die passivierende Deckschicht besteht in der ersten Stufe des Passivierungsvorganges aus einer Thallium-I-Verbindung. Bei weiterem Stromdurchgang tritt an der passiven Anode eine Umwandlung des Metalles ein, wobei es nunmehr wieder unter Aussendung von Tl3+-Ionen in Lösung geht. In dieser Verbindungsform erfolgt dann eine zweite mechanische Passivierung durch eine Deckschicht, die aus einem Thallium-III-salz besteht.Es beruhen somit alle Arten von Passivität nur auf der Ausbildung von Deckschichten.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Weinheim [u.a.] : Wiley-Blackwell
    Materials and Corrosion/Werkstoffe und Korrosion 5 (1954), S. 49-54 
    ISSN: 0947-5117
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: The Anodic Behaviour of Aluminium and Al—Mg Alloys in Sulphuric Acid and Sodium Sulphate SolutionsAttempts were made to remove the film of oxide from aluminium and Al— Mg alloys, so that a pure aluminium surface could be obtained. Dilute sulphuric Acid and Sodium sulphate solutions of various concentrations were used as electrolytes. Only one cathodic polarisation had a slight effect on the loosening of the oxide film. However, a very rapid passivation always followed this activation (caused by the chemical action of the aqueous solutions). Hydrochloric acid and NaOH solutions in high concentrations did dissolve the oxide film, but did not permit of any anodic passivation in these solutions. It was possible to obtain activation in sulphuric acid containing chlorine ions, but, even in this solution passivation commenced as soon as the current was switched off. This passivation was caused by the chemical action of the electrolytes the porosity of the natural oxide film was reduced to 10-5 sq. cm./sq. cm. by activation, and a maximum value of 10-2 sq. cm./sq. cm. was obtained. As a result of the strong chemical affinity of aluminium, it is only possible to obtain a clean metallic surface for fractions of seconds.
    Notes: Es wurde versucht, den Oxydfilm von Aluminium und Al—Mg—Legierungen zu entferne, um reine Aluminiumoberflächen zu erhalten. Hierbei wurden verdünnte Schwefelsäure und Natriumsulfatlösungen verschiedener Konzentration als Elektrolyte benützt. Nur eine kathodische Polarisation hatte einen geringen, die natürliche Oxydschicht auflockernden aktivierenden Einfluß. Nach der Aktivierung trat jedoch immer wieder eine sehr schnelle Passivierung nur durch chemische Einwirkung der wäßrigen Lösung wieder ein. Salzsäuren und NaOH—Lösungen stärkerer Konzentration lösten wohl die Oxydschichten auf, gestatteten aber keine anodische Passivierung in diesen Lösungen. Eine Aktivierung konnte wohl in einer chlorionenhaltigen Schwefelsäure erzielt werden, aber auch in dieser Lösung trat augenblicklich nach Abschaltung des Stromes wieder Passivierung durch chemische Einwirkung des Elektrolyten ein. Die Porosität der natürlichen Oxydschicht wurde zu 10-4 bis 10-5 cm2/cm2 ermittelt, die maximal auf 10-2 cm2/cm2 durch Aktivierung gebracht werden konnte. Auf Grund der starken chemischen Affinität des Aluminiums ist die Erzielung einer freien, unbedeckten Metalloberfläche nur für Bruchteile von Sekunden möglich.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Weinheim [u.a.] : Wiley-Blackwell
    Materials and Corrosion/Werkstoffe und Korrosion 5 (1954), S. 295-301 
    ISSN: 0947-5117
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: The Action of Alkaline Solutions on Aluminium and Aluminium AlloysPure aluminium is so strongly active in 0,1-NaHO that it cannot even be passivated by anodic treatment. Its passivity in alkaline solutions weaker than 0,1-NaOH is very quickly destroyed when the solution contains NaCl. However, an alloy of Al-Mg containing more than 14% Mg can be passivated in strong NaOH. This passivity is also less sensitive to chlorides than that of pure aluminium.Pure aluminium and the Al-Mg alloys are permanently active in pure NaCl solutions, since the Aluminium Chloride is very soluble and, as a result of the Al(OH)3 formed by hydrolysis, is not directly on the surface of the metal, and therefore cannot cause any formation of covering layers.An addition of NaOH to the NaCl solution diminishes the action of the NaCl on pure aluminium. This is due to the formation of a covering layer. In the case of NaCO3 solutions the re-dissolving power of the solutions is so small that passivity is easily obtained. A quantative determination of the porosity of the layer of natural oxide on aluminium showed a pore area of 0,035 % of the total surface area. The higher the concentration of the alkali and the greater the sodium chloride content of the solutions, the more porous will be the covering layers formed s a result of the passivation.It is not possible to reduce by anodic treatment the amount of metal removed when aluminium is acted upon by alkaline solutions, since anodic treatment is no longer possible with the alkali concentration necessary to act on the metal.
    Notes: Reinstaluminium ist in stärkeren Laugen als 0,1-n-NaOH so stark aktiv, daß es auch bei einer anodischen Behandlung nicht passiviert werden kann. Die Passivität in Laugen, die schwächer als 0,1-n-NaOH sind, wird durch einen Gehalt der Lauge an NaCl sehr schnell zerstört. Eine Al-Mg-Legierung mit mehr als 14% Mg kann jedoch auch in starker NaOH ohne weiteres passiviert werden, da MgO und Mg(OH)2 in Laugen unlöslich sind. Diese Passivität ist auch gegen Chloride viel weniger empfindlich als selbst die von Reinstaluminium.In reinen NaCl-Lösungen sind Reinstaluminium und Al-Mg-Legierung dauernd aktiv, da das Aluminiumchlorid sehr leichtlöslich ist und durch Hydrolyse gebildetes Al(OH)2 nicht unmittelbar an der Metalloberfläche entsteht und daher auch zu keiner Deckschichtbildung führen kann.Durch einen Zusatz von NaOH zur NaCl-Lösung wird der Angriff von NaCl auf Reinstaluminium verringert, was auf eine Deckschichtbildung zurückzuführen ist. In NaCO3-Lösungen ist das Rücklösungsvermögen der Lösung so gering, daß eine Passivität ohne weiteres erzielbar ist. Die quantitative Bestimmung der Porosität der natürlichen Oxydschicht am Aluminium ergab für Sodalösungen eine Porenfläche von etwa, 0,035 % der Gesamtfläche. Je stärker die Laugenkonzentration und je größer der Gehalt der Lösung an Natriumchlorid ist, desto porösere Deckschichten werden bei der Passivierung gebildet.Es ist nicht möglich, die Metallabtragung beim Beizen von Aluminium in Laugen durch eine anodische Behandlung und Deckschichtbildung zu verringern, da bei den für das Beizen in Betracht kommenden Laugenkonzentrationen eine anodische Passivierung nicht mehr möglich ist.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...