Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (2)
  • Sodium chloride cotransport  (2)
  • 1
    ISSN: 1432-2013
    Keywords: Intracellular sodium activity ; Early distal tubule ; Sodium chloride cotransport ; Potassium ; Sodium sensitive microelectrode
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract From previous studies it is known that a furosemide-sensitive sodium chloride cotransport system is operative in the luminal cell membrane of the early distal amphibian tubule. Since inhibition of sodium chloride cotransport prevents potassium reabsorption in this nephron segment, experiments were carried out to evaluate further the possible relationship between sodium chloride and potassium transport by studying the changes of cellular sodium activity following luminal deletion of potassium ions. Sodium-sensitive liquid ion exchange microelectrodes and conventional microelectrodes were employed to determine the transpithelial potential (PDte), the peritubular cell membrane potential (PDpt) and the intracellular sodium activity (Nai +) in the presence and absence of luminal potassium. The ratio of the luminal cell membrane resistance over the peritubular cell membrane resistance (Rlu/Rpt) was also estimated. When potassium ions are omitted from the luminal perfusate, PDpt hyperpolarizes by some 20 mV, PDte approaches zero and Nai + decreases by about 40%. Rlu/Rpt is more than doubled in the presence of a potassium-free perfusate. Both potential and resistance changes are fully reversible. Similar results were obtained in experiments in which Barium ions (1 mmol/l BaCl2) were present during the luminal potassium substitution. Our results indicate that absence of potassium inhibits luminal sodium chloride entry; as a result of continued peritubular sodium extrusion cellular sodium activity falls. The increase of Rlu/Rpt following perfusion with a potassium-free perfusate is interpreted as a decrease of a significant electrodiffusive potassium conductance in the luminal cell membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 60 (1982), S. 1173-1179 
    ISSN: 1432-1440
    Keywords: Distal tubule ; Furosemide ; Ion-sensitive microelectrodes ; Sodium chloride cotransport ; Potassium adaptation ; Distaler Tubulus ; Furosemid ; Ionen-sensitive Microelektroden ; Natrium Chlorid Kotransport ; Kaliumadaptation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Experimente am distalen Tubulus der doppelt perfundierten Niere des Amphiuma wurden ausgeführt, um die aktiven und passiven Kräfte zu bestimmen, die in die Transportprozesse von Kalium, Natrium und Chlorid involviert sind. Ionen-sensitive und konventionelle Mikroelektroden wurden verwendet, um intrazelluläre Ionenaktivitäten, Zellmembranpotentiale und Kalium- und Chlorid Nettoflüsse unter Kontrollbedingungen und während Hemmung des aktiven Transports abzuschätzen. Auf der Basis folgender Beobachtungen wird ein Natrium-Chlorid Kotransport postuliert, der in der luminalen Zellmembran lokalisiert ist: Entfernung von Natrium aus dem Tubuluslumen hemmt die Furosemid empfindliche Chloridresorption, verringert die luminal positive transepitheliale Potentialdifferenz und führt zu dramatischem Abfall des intrazellulären Chlorids. Die Experimente schlagen ferner vor, daß Kaliumionen im Natrium-Chlorid Transportsystem involviert sind, weil die Kaliumresorption durch Furosemid gehemmt wird, und weil intrazelluläres Natrium signifikant abfällt, wenn die Kaliumionen aus der Tubulusflüssigkeit entfernt werden. Weiters gibt es experimentelle Hinweise, daß nach der Kalium Adaptation der luminale Kalium-Aufnahmemechanismus unterdrückt ist. Unter diesen Bedingungen ist der Kaliumtransport unempfindiich auf Furosemid. Die Daten schlagen ein Furosemid empfindliches Kotransport-System für Natrium, Chlorid und Kalium in der luminalen Zellmembran vor. Die Energie für diesen Carriervermittelten Transportprozeß wird von einem großen „Bergab“-Gradienten von Natrium über die luminale Zellmembran bereitgestellt, der seinerseits durch die in der peritubulären Zellmembran lokalisierte Natriumpumpe aufrechterhalten wird.
    Notes: Summary Experiments were performed in the distal tubule of the doubly-perfused kidney of Amphiuma to determine active and passive forces, involved in the transport processes of potassium, sodium and chloride. Ion-sensitive microelectrodes and conventional microelectrodes were applied to estimate intracellular ion activities, cell membrane potentials and net flux of potassium and chloride under control conditions and during inhibition of active transport. Sodium chloride cotransport, located in the luminal cell membrane is postulated, based on the following observations: Total omission of sodium from the tubular lumen inhibits furosemide sensitive chloride reabsorption, decreases the lumen positive transepithelial potential difference and leads to a dramatic decrease of intracellular chloride. The experiments further suggest that potassium ions are involved in the sodium chloride transport system because potassium reabsorption is inhibited by furosemide and because intracellular sodium falls significantly when potassium ions are removed from the tubular fluid. Furthermore, there is experimental evidence that the luminal potassium uptake mechanism is suppressed after potassium adaptation. Under these conditions potassium transport is found to be insensitive to furosemide. The data suggest a furosemide sensitive contransport system for sodium, chloride and potassium, operative in the luminal cell membrane. The energy for this carrier-mediated transport process is provided by the large “downhill” gradient of sodium across the luminal cell membrane which is maintained by the sodium pump located in the peritubular cell membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 47 (1993), S. 1665-1672 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Effects of a series of thiophenols R—ArSH with substituting groups R in the para-position and 2-mercaptobenzoic acid on the kinetics of polymerization of methyl methacrylate (MMA) photoinitiated by benzoin isopropyl ether (BIPE) were investigated using an autorecording dilatometer. Thiophenols were found to have a dual effect on polymerization: reducing induction time and accelerating rate of polymerization. A mechanism was proposed suggesting that this increased rate of polymerization and reduced induction time with addition of a thiophenol is due to the fact that, instead of consuming radicals, the dissolved oxygen in the MMA/BIPE system can be converted into active radicals through effective photooxidation of the thiophenol. Although the maximum increase in rate of polymerization is of a minor difference between various thiophenol compounds, reduction in induction time is strongly dependent on the nature of substituting groups in the following order: —CH3 〉 —CH(CH3)2 〉 —OCH3 or —Cl 〉 —H. 2-Mercaptobenzoic acid, on the other hand, increases induction time and decreases rate of polymerization. © 1993 John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Acta Polymerica 44 (1993), S. 273-278 
    ISSN: 0323-7648
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The microfibrils and the microfibrillar network in poly(p-phenylene terephthalamide) (PPTA) fibers formed during the coagulation from a monodomain lyotropic fiber are stabilized by critical point drying and characterized by electron microscopy and small angle X-ray scattering. The diameter of the microfibrils varies from 20 to 49 nm depending on the PPTA concentration in the lyotropic solution used for the spinning. A formation mechanism for the microfibrils and the microfibrillar network is suggested. During the coagulation, the spinodal decomposition (phase separation) is assumed to occur before the crystallization (phase transition), resulting in the formation of the microfibrils. The formation of the microfibrillar network is considered to be related to the misorientation of macromolecules and the density fluctuation in the cross-section of the filament during spinodal decomposition.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...