Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Biomaterials 5 (1994), S. 39-45 
    ISSN: 1045-4861
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Neonatal rat calvaria osteoblasts were cultured on hydroxyapatite (as received or relatively-rough surface and mechanically polished to a 0.3-m̈m finish) and on glass (reference material) in Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum, 50 μg/mL ascorbic acid, and 10 mM β-glycerophosphate under standard, sterile, cell-culture conditions for 1, 3, 7, 14 and 21 days. At the end of the prescribed time periods, the cells were fixed and embedded in resin before removing the material substrates by exposure to acid solutions. Transmission electron microscopic examination of stained, ultrathin sections of the biological structures revealed osteoblast monolayers at 1 day of culture but multilayered cell structures at later time periods (14 and 21 days). The osteoblasts exhibited continuous contact and intimate apposition on polished hydroxyapatite and on glass; in contrast, osteoblasts on as received or rough hydroxyapatite made contact with discrete high points, spanned low regions of the material surface, and did not conform to all substrate contours. An electron dense layer (composed of mucopolysaccharides and proteins) was observed on all substrates tested after 7 days of culture. Collagen fibrils were seen interspersed among the osteoblasts as early as 3 days of culture; at later culture times, (i.e., 21 days) mineralized loci were observed in the extracellular matrix. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 40 (1998), S. 371-377 
    ISSN: 0021-9304
    Keywords: osteoblast ; adhesion ; peptide ; integrin ; heparan sulfate ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Proactive, “next generation” dental/orthopedic biomaterials must be designed rationally to elicit specific, timely, and desirable responses from surrounding cells/tissues; for example, such biomaterials should support and enhance osteoblast adhesion (a crucial function for anchorage-dependent cells). In the past, integrin-binding peptides have been immobilized on substrates to partially control osteoblast adhesion; the present study focused on the design, synthesis, and bioactivity of the novel peptide sequence Lys-Arg-Ser-Arg that selectively enhances heparan sulfate-mediated osteoblast adhesion mechanisms. Osteoblast, but not endothelial cell or fibroblast, adhesion was enhanced significantly (p 〈 0.05) on substrates modified with Lys-Arg-Ser-Arg peptides, indicating that these peptides may be osteoblast- or bone cell specific. Blocking osteoblast cell-membrane receptors with various concentrations of soluble Arg-Gly-Asp-Ser peptides did not inhibit subsequent cell adhesion on substrates modified with Lys-Arg-Ser-Arg peptides, providing evidence that osteoblasts interact with Arg-Gly-Asp-Ser and with Lys-Arg-Ser-Arg peptides via distinct (i.e., integrin- and proteoglycan-mediated) mechanisms, each uniquely necessary for osteoblast adhesion. The present study constitutes an example of rational design/selection of bioactive peptides, confirms that osteoblast adhesion to substrates can be controlled selectively and significantly by immobilized peptides, and elucidates criteria and strategies for the design of proactive dental/orthopedic implant biomaterials. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 371-377, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 25 (1991), S. 711-723 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Responses of neonatal rat calvarial osteoblasts to a variety of orthopedic implant materials were examined in vitro. Attachment, proliferation, and collagen synthesis of a well-characterized line of osteoblasts with 316L stainless steel, Ti-6Al-4V, CoCR-Mo, PMMA, hydroxyapatite, borosilicate glass, and tissue culture polystyrene were studied. Cell adhesion and growth were similar on nonapatitic materials. In contrast, attachment and growth of osteoblasts were significantly lower and slower, respectively, on hydroxyapatite. Collagen synthesis per cell and relative collagen synthesis, however, were comparable on all the materials tested.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 28 (1994), S. 1445-1453 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Rat osteoblasts were cultured on films of biodegradable poly(L-lactic acid) (PLLA), 75:25 poly(DL-lactic-co-glycolic acid) (PLGA), 50:50 PLGA, and poly(glycolic acid) (PGA) for up to 14 days. Osteoblasts attached equally well to all the polymer substrates after 8 h in culture. By day 4 in culture, osteoblasts had exceeded confluency numbers, and their proliferation leveled off by day 7. An increase in alkaline phosphatase (ALP) activity from 1.92 (±0.47) × 10-7 for day 7 to 5.75 (±0.12) × 10-7 μmol/cell per min for day 14 was reported for osteoblasts cultured on 75:25 PLGA, which was comparable to that observed for tissue culture polystyrene (TCPS) controls. The ALP activities expressed by osteoblasts cultured on PLLA, 50:50 PLGA, and PGA films did not significantly increase over time. Collagen synthesis for osteoblasts cultured on all polymer substrates was similar to that of TCPS and did not vary with time. The morphology of cultured osteoblasts was not affected by the continuous degradation of the polymer substrates. These results demonstrate that poly(α-hydroxy esters) can provide a suitable substrate for osteoblast culture and hold promise in bone regeneration by osteoblast transplantation. © 1994 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...