Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 433 (1996), S. 312-320 
    ISSN: 1432-2013
    Keywords: Key words Capacitative Ca2+ entry ; Protease nexin-1 ; Glial cells ; Ca2+ oscillations ; Protein kinase C
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The aim of the present study was to examine the possible role of protein kinase C (PKC) in thrombin-induced Ca2+ signalling. As shown before, continuous superfusion of rat glioma cells with thrombin caused sustained [Ca2+]i oscillations through activation of cell surface receptors [Czubayko U, Reiser G (1995) Neuroreport 6: 1249]. These oscillations were inhibited by protease nexin-1. Addition of PKC inhibitors, i. e. staurosporine (0.2–20 μM), bisindolylmaleimide (1 μM) or chelerythrine (1 μM), irreversibly suppressed thrombin-induced [Ca2+]i oscillations. Thereafter application of 2,5-di(tert-butyl)-1,4-benzohydroquinone (t-BuBHQ, 20 μM) or thapsigargin (1 μM) (inhibitors of sarco/endoplasmic reticulum Ca2+-ATPase) caused no [Ca2+]i response, indicating that intracellular Ca2+ stores were completely empty. We tested whether PKC affects the refilling of internal Ca2+ stores in thrombin-stimulated cells, by monitoring the amount of Ca2+ release caused by t-BuBHQ in the presence or absence of PKC inhibitors or activators. The amount of Ca2+ released by t-BuBHQ, which was normalized by comparison with the thrombin-induced Ca2+ response, was decreased by simultaneous incubation with staurosporine or chelerythrine, but enhanced with the PKC activator oleoyl acetyl glycerol. Furthermore, the capacitative Ca2+ entry was reduced by inhibition or downregulation, and increased by activation, of PKC. Capacitative Ca2+ entry was induced in these experiments by depletion of Ca2+ stores by the addition of thapsigargin or t-BuBHQ. In contrast, the inhibition of PKC during thrombin-induced depletion of intracellular stores did not influence the Ca2+ entry but nearly completely abolished the refilling of the internal stores. Thus we conclude that during thrombin receptor stimulation activation of PKC is required to maintain the refilling of intracellular Ca2+ stores for sustained [Ca2+]i oscillations. Thus, the control by PKC of the capacitative Ca2+ entry is apparently different depending on whether it is induced by sarco/endoplasmic reticulum Ca2+-ATPase inhibition or by activation of the thrombin receptor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...