Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 35 (1992), S. 405-410 
    ISSN: 1432-1432
    Keywords: RNA polymerase II ; Largest subunit ; Carboxy-terminal domain ; Mammalian
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have isolated and sequenced a portion of the gene encoding the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II from three mammals. These mammalian sequences include one rodent and two primate CTDs. Comparisons of the new sequences to mouse and Chinese hamster show a high degree of conservation among the mammalian CTDs. Due to synonymous codon usage, the nucleotide differences between hamster, rat, ape, and human result in no amino acid changes. The amino acid sequence for the mouse CTD appears to have one different amino acid when compared to the other four sequences. Therefore, except for the one variation in mouse, all of the known mammalian CTDs have identical amino acid sequences. This is in marked contrast to the situation among more divergent species. The present study suggests that there is a strong evolutionary pressure to maintain the primary structure of the mammalian CTD.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 246 (1995), S. 778-782 
    ISSN: 1617-4623
    Keywords: RNA polymerase II ; α-Amanitin Mutation ; Transcription
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We report the identification of three new α-amanitin resistance mutations in the gene encoding the largest subunit of mouse RNA polymerase II (RPII215). These mutations are clustered in a region of the largest subunit that is important for transcription elongation. This same domain has been identified as the site of α-amanitin resistance mutations in both Drosophila and Caenarhabditis elegans. The sequences encompassing this cluster of mutations are highly conserved among RNA polymerase II genes from a number of species, including those that are naturally more resistant to α-amanitin suggesting that this region of the largest subunit is critical for a conserved catalytic function. The mutations reported here change leucine 745 to phenylalanine, arginine 749 to proline, or isoleucine 779 to phenylalanine. Together with the previously reported asparagine 792 to aspartate substitution these mutations define a potential α-amanitin binding pocket in a region of the mouse subunit that could be involved in translocation of polymerase during elongation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...