Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Tropaeolum majus  (3)
  • Sensitization  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Entomologia experimentalis et applicata 76 (1995), S. 295-302 
    ISSN: 1570-7458
    Schlagwort(e): Pieris rapae ; Lepidoptera ; Pieridae ; Tropaeolum majus ; nasturtium ; feeding deterrent ; habituation ; cardenolide ; wheat germ diet
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Sensitivity of the cabbage butterfly,Pieris rapae L. to feeding deterrents was compared for larvae reared on different food sources under laboratory conditions. Since cabbage-reared larvae normally reject nasturtium,Tropaeolum majus L., the effects of previous exposure to allelochemicals on larval acceptance or rejection of this plant were also examined. When compared with cabbage-reared larvae, nasturtium-reared larvae were less sensitive to feeding deterrents including cymarin, erysimoside and 2-O-β-d-glucosyl cucurbitacin E. Nasturtium-reared larvae were insensitive to chlorogenic acid, which was deterrent to cabbage-reared larvae. Feeding by larvae reared on a wheat germ diet was not deterred by these compounds. The results indicate that dietary experience can extensively affect larval sensitivity to feeding deterrents and that cross habituation of larvae to deterrents occurs in response to certain chemical constituents of nasturtium and wheat germ diet. Digitoxin, however, proved to be an exception. Larvae reared on either nasturtium or wheat germ diet were as sensitive to digitoxin as those reared on cabbage. Previous results have shown that rejectionof nasturtium by cabbage-reared larvae is due to the presence of strong feeding deterrents in this plant. However, more than 50% of 2nd instar larvae reared from neonate on cabbage leaves treated with strophanthidin, cymarin, erysimoside, digitoxigenin and digitoxin accepted nasturtium as a food source. 2-O-β-d-glucosyl cucurbitacin E, 2-O-β-d-glucosyl cucurbitacin I and rutin were also active in causing larvae to feed on nasturtium. Thus dietary exposure to unrelated plant chemicals can profoundly affect insect acceptance of a plant that contains feeding deterrents.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Entomologia experimentalis et applicata 80 (1996), S. 90-92 
    ISSN: 1570-7458
    Schlagwort(e): Pieridae ; Nasturtium ; Tropaeolum majus ; antifeedants ; habituation ; diet ; experience
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Journal of chemical ecology 21 (1995), S. 1601-1617 
    ISSN: 1573-1561
    Schlagwort(e): Pieris rapae ; Lepidoptera ; Pieridae ; Tropaeolum majus ; nasturtium ; feeding deterrent ; chlorogenic acid ; habituation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Abstract Rejection of nasturtium,Tropaeolum majus, by cabbage-reared larvae ofPieris rapae has been explained by the presence of feeding deterrents in the nastrutium foliage. Sensitivity to the deterrents develops as neonate larvae feed on cabbage. The most prominent deterrent compound, which is present in nasturtium at a concentration of 40 mg/100 g fresh leaves, was identified as chlorogenic acid. When neonate larvae were fed on a cabbage leaf treated with high concentrations of deterrent-containing extracts of nasturtium foliage, they remained insensitive to the deterrents, so they accepted nasturtium when transferred as second instars. When neonate larvae were reared on a cabbage leaf treated with 0.1 mg chlorogenic acid, ca. 35% of the second instars accepted nasturtium. Similar dietary exposure of neonates to the subunits of chlorogenic acid, caffeic acid and quinic, acid resulted in much less or no effect on the rejection behavior of second instars. The results suggest that the combined effects of specific chemical constituents of nasturtium can explain the rejection of this plant by larvae ofP. rapae, but if larvae are continuously exposed to these compounds immediately after hatching, they apparently become habituated to the feeding deterrents. The lack of activity of the subunits of chlorogenic acid suggests that specific structural features are necessary for a dietary constituent to cause such habituation or suppression of sensitivity development.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Journal of chemical ecology 21 (1995), S. 465-475 
    ISSN: 1573-1561
    Schlagwort(e): Sensitization ; habituation ; dietary experience ; feeding deterrents ; Pieris rapae
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Abstract Garden nasturtium,Tropaeolum majus (Tropaeolaceae), is an acceptable host plant for the cabbage butterfly,Pieris rapae. Eggs are readily laid on the plant and hatching larvae feed and develop into normal pupae and adults. However, when second- to fifth-instar larvae were transferred from cabbage to nasturtium, they refused to feed and starved to death. Similar results were obtained when larvae were transferred from other host plants to nasturtium. However, larvae that were reared on nasturtium readily accepted cabbage as a new host plant. We have demonstrated the presence of strong antifeedants in nasturtium foliage and identified the most prominent active compound as chlorogenic acid. However, larvae reared on nasturtium had limited sensitivity, and larvae reared on a wheat germ diet were completely insensitive to the antifeedants. Larvae apparently develop sensitivity to the deterrent as a result of feeding on other host plants, whereas continuous exposure to the deterrent causes habituation or suppression of sensitivity development. The results demonstrate that dietary experience can dramatically affect the response of an insect to a potentially antifeedant compound in a plant.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...