Bibliothek

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Entomologia experimentalis et applicata 76 (1995), S. 295-302 
    ISSN: 1570-7458
    Schlagwort(e): Pieris rapae ; Lepidoptera ; Pieridae ; Tropaeolum majus ; nasturtium ; feeding deterrent ; habituation ; cardenolide ; wheat germ diet
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Sensitivity of the cabbage butterfly,Pieris rapae L. to feeding deterrents was compared for larvae reared on different food sources under laboratory conditions. Since cabbage-reared larvae normally reject nasturtium,Tropaeolum majus L., the effects of previous exposure to allelochemicals on larval acceptance or rejection of this plant were also examined. When compared with cabbage-reared larvae, nasturtium-reared larvae were less sensitive to feeding deterrents including cymarin, erysimoside and 2-O-β-d-glucosyl cucurbitacin E. Nasturtium-reared larvae were insensitive to chlorogenic acid, which was deterrent to cabbage-reared larvae. Feeding by larvae reared on a wheat germ diet was not deterred by these compounds. The results indicate that dietary experience can extensively affect larval sensitivity to feeding deterrents and that cross habituation of larvae to deterrents occurs in response to certain chemical constituents of nasturtium and wheat germ diet. Digitoxin, however, proved to be an exception. Larvae reared on either nasturtium or wheat germ diet were as sensitive to digitoxin as those reared on cabbage. Previous results have shown that rejectionof nasturtium by cabbage-reared larvae is due to the presence of strong feeding deterrents in this plant. However, more than 50% of 2nd instar larvae reared from neonate on cabbage leaves treated with strophanthidin, cymarin, erysimoside, digitoxigenin and digitoxin accepted nasturtium as a food source. 2-O-β-d-glucosyl cucurbitacin E, 2-O-β-d-glucosyl cucurbitacin I and rutin were also active in causing larvae to feed on nasturtium. Thus dietary exposure to unrelated plant chemicals can profoundly affect insect acceptance of a plant that contains feeding deterrents.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...