Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Der Anaesthesist 46 (1997), S. 1054-1063 
    ISSN: 1432-055X
    Keywords: Schlüsselwörter Inhalationsanästhetika ; Sevofluran ; Isofluran ; trockener Atemkalk ; Zerfallprodukte ; Natriumhydroxid ; Kaliumhydroxid ; Toxizität ; Wärmeentwicklung ; Key words Inhalation anaesthestics ; Sevoflurane ; Isoflurane ; Dry soda lime ; Degradation products ; Sodium hydroxide ; Potassium hydroxide ; Toxicity ; Heat production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Abstract All volatile anesthetics undergo chemical breakdown to multiple, partly identified degradation products in the presence of dry soda lime. These chemical reactions are highly exothermic, ranging from 100° C for halothane to 120° C for sevoflurane. The increase in temperature correlates with the moisture content of the soda lime, being maximal below 5%. Sevoflurane and isoflurane were exposed to dry soda lime in a circle system. The anaesthetic gas was condensed in a series of cold temperature traps and the degradation products of the volatile anesthetics were analysed using GC/MS. Surprisingly, neither sevoflurane nor its degradation products could be measured in the gas-flow emerging from the soda lime during the first 15–20 min of exposure. After 20 minutes, larger quantities of methanol, compounds C and D as well as compounds A and B were detected. After 40–60 min of exposure, sevoflurane’s degradation markedly decreased and unaltered sevoflurane emerged from the soda lime canister. Additionally, using isoflurane in the same experimental set-up resulted in various degradation products due to its reaction with dry soda lime. Obviously, all volatile anesthetics are prone to such a reaction. In conclusion, sevoflurane and isoflurane react with dry soda lime. These reactions are caused by the presence of two components of soda lime, sodium hydroxide and potassium hydroxide. A modification of soda lime to prevent its reaction with volatile anaesthetics is discussed.
    Notes: Zusammenfassung Alle halogenierten Inhalationsanästhetika unterliegen in Anwesenheit von trockenem Atemkalk einem chemischen Zerfall zu zahlreichen, zum Teil noch nicht bekannten und nicht identifizierten Produkten. Bei den Reaktionen entwickeln sich sehr hohe Temperaturen, die beim Halothan Werte von 100° C, beim Sevofluran 120° C erreichen können. Die Heftigkeit der Reaktion ist vom Feuchtegrad des Atemkalks abhängig und findet ihr Maximum unterhalb eines Wassergehalts von 5%. An einem Narkosegerät wurde die Reaktionen von Sevofluran und Isofluran mit trockenem Atemkalk simuliert, das Narkosegas anschließend in einer Kühlfalle kondensiert und die Reaktionsprodukte mittels GC/MS gemessen. Bei großer Hitzeentwicklung zerfällt Sevofluran unter diesen Bedingungen zu zahlreichen Reaktionsprodukten. Überraschend war der Nachweis, daß während der ersten 15–20 min nach „Narkosebeginn” weder Sevofluran noch Reaktionsprodukte den Atemkalk verließen. Später wurden erstmals in einem Narkosesystem größere Mengen von Methanol sowie Compound C und D neben großen Mengen von Compound A und B gemessen. Durch kontinuierliche Messungen kann der zeitliche Verlauf der Reaktion von Sevofluran mit Atemkalk verfolgt werden. Die Reaktion klingt nach 40–60 min ab. Erst dann werden ausreichende Sevoflurankonzentrationen erreicht. Der zu diesem Zeitpunkt eine Sättigung des Atemkalks anzeigende Farbumschlag konnte auf eine chemische Veränderung des Indikators zurückgeführt werden. Auch bei Einsatz von Isofluran konnte bei einer Reaktion mit trockenem Atemkalk das Entstehen mehrerer Reaktionsprodukte exemplarisch festgestellt werden. Es wird gefolgert, daß alle halogenierten Gasanästhetika mit trockenem Atemkalk reagieren können. Diese Reaktion ist auf den Gehalt des Atemkalks an Kaliumhydroxid und an Natriumhydroxid zurückzuführen. Die Möglichkeit, durch eine Veränderung des Atemkalks die Reaktion zu verhindern, wird erörtert.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Der Anaesthesist 46 (1997), S. 1071-1075 
    ISSN: 1432-055X
    Keywords: Schlüsselwörter Sevofluran ; Sevofluranreaktionen ; Kaliumhydroxid ; Natriumhydroxid ; Kalziumhydroxid ; Bariumhydroxid ; Key words Sevoflurane ; Sevoflurane reactions ; Potassium hydroxide ; Sodium hydroxide ; Calcium hydroxide ; Barium hydroxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Abstract The various components of commercial soda lime (sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide) were studied in terms of their reactivity with sevoflurane at its boiling point (59° C). A simple closed system, a reflux cooler, served as a model. Analyses were performed by GC/MS. Besides sevoflurane, we identified four compounds: A, B, C, and D. Free methanol, formaldehyde and formic acid could not be found. Presumably methanol is transferred from an intermediate formalin-semiacetal of the hexafluorisopropanol. Calcium hydroxide and barium hydroxide showed little reaction with sevoflurane, whereas larger amounts of reaction products were observed with sodium hydroxide and potassium hydroxide. The alkali hydroxides of sodalime are presumably responsible for its reaction with halogenated inhalation anaesthetics. We therefore conclude that decomposing reactions of halogenated inhalation anesthetics with dry soda lime could be prevented by using a newly developed soda lime.
    Notes: Zusammenfassung In einem einfachen geschlossenen System als Modell (Rückflußkühler) wurden die verschiedenen Komponenten von kommerziellem Atemkalk (Natriumhydroxid, Kaliumhydroxid, Kalziumhydroxid, Bariumhydroxid) auf ihr Reaktionsverhalten mit Sevofluran an dessen Siedepunkt (59° C) untersucht. Die Analysen erfolgten mittels GC/MS. Identifiziert wurden neben Sevofluran Compound A, B, C, D. Freies Methanol wurde ebenso wie Formaldehyd oder Ameisensäure nicht gefunden. Daher wird angenommen, daß eine Methanolübertragung aus einem intermediären Formaldehydsemiacetal mit Hexafluorisopropanol erfolgt. Während Kalziumhydroxid und Bariumhydroxid kaum eine Reaktion mit Sevofluran zeigen, können mit Natriumhydroxid und Kaliumhydroxid die entsprechenden Reaktionsprodukte in größerem Umfang festgestellt werden. Es wird daher gefolgert, daß die Alkalihydroxide des Atemkalks für dessen Reaktion mit halogenierten Inhalationsanästhetika verantwortlich sind. Daraus ist zu folgern, daß mittels eines neu zu konzipierenden Atemkalks die Zerfallsreaktionen von halogenierten Inhalationsanästhetika an trockenem Atemkalk verhindert werden könnten.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...