Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 306 (1979), S. 195-201 
    ISSN: 1432-1912
    Keywords: Substance P ; Guinea-pig ileum ; Densensitization ; Peptidergic nerves ; Immunofluorescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The desensitization of receptors for substance P in the longitudinal muscle of the guinea-pig ileum has been studied. Receptors for substance P in the muscle became desensitized in the presence of relatively large concentrations of synthetic substance P; a desensitizing concentration of substance P of 7.5×10−9 M shifted the concentration-response curve for substance P about 20-fold to the right, while a desensitizing concentration of 7.5×10−8 M shifted the curve about 300-fold to the right. This desensitization appeared specific; concentration-response curves for carbachol, DMPP, 5-HT and bradykinin were not significantly affected by substance P, 7.5×10−8 M. Furthermore, substance P in concentrations up to 7.5×10−8 M did not modify transmission from either cholinergic nerves or enteric inhibitory nerves when these were stimulated electrically. However, hyoscine-resistant contractions produced by stimulation of nerves in the ileum at 10 Hz were abolished by exposure to concentrations of substance P of 7.5×10−9 M or greater, suggesting that these nerves release a substance similar to or identical with substance P. DMPP evoked small hyoscine-resistant contractions of the ileum. These contractions were also antagonised by desensitization of receptors for substance P. Immunohistochemical studies showed substance P-like immunoreactivity in nerve terminals of both the myenteric and submucous plexuses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 328 (1985), S. 446-453 
    ISSN: 1432-1912
    Keywords: Substance P ; Enteric neurons ; Autonomic nervous system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The sites of action and possible roles of substance P in contracting the circular muscle of the guinea-pig ileum were studied using two analogues of substance P that act as antagonists of some of its actions. These ared-Arg1,d-Pro2,d-Trp7,9, Leu11-substance P andd-Pro2,d-Trp7,9-substance P, referred to by the single letter amino acid codes for the substituting amino acids as (RPWWL)-SP and (PWW)-SP, respectively. Records of circular muscle activity were taken from strips of intestine free of mucosa and submucosa and from rings with all layers of intestine intact. Substance P was equally effective in contracting the circular muscle strips as it was in contracting the longitudinal muscle. The contractions of strips were not blocked by hyoscine (2×10−6 M) or tetrodotoxin (6×10−7 M), but were substantially reduced by (RPWWL)-SP (6.7×10−6 M) or (PWW)-SP (2×10−5 M). In contrast, contractions of the circular muscle of whole rings of intestine elicited by low concentrations of substance P (4×10−7M) were blocked by hyoscine or tetrodotoxin but notreduced by the substance P antagonists in the concentrations referred to above. These observations indicate that the antagonists are effective at receptors for substance P on the muscle, but not at substance P receptors on enteric cholinergic nerves. Transmural stimulation of strips of circular muscle or of intestinal rings in the presence of hyoscine evoked contractions that were blocked by tetrodotoxin. These hyoscineresistant, nerve-mediated contractions could be elicited by single pulses in the strips. The contractions were reduced to less than 20% of original amplitude by (RPWWL)-SP (6.7×10−6M). Reflex contractions of the circular muscle recorded on the oral side of a distension stimulus had a low-threshold, hyoscine-sensitive and a high-threshold, hyoscine-insensitive, component. The low threshold component was unaffected by the substance P antagonists whereas the high threshold component was depressed. It is concluded that substance P nerves are effective in transmitting to the circular muscle, that they are final nerves in non-cholinergic excitatory reflexes, and that the substance P antagonist analogues can be used to distinguish actions of substance P at neural and muscle receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 329 (1985), S. 382-387 
    ISSN: 1432-1912
    Keywords: Substance P ; Enteric neurons ; Mucosal transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The action of substance P (SP) on mucosal ion transport has been investigated in the guinea-pig small intestine. Segments of intestine were dissected free of external muscle and myenteric plexus and mounted in Ussing chambers. Short-circuit current (I sc) was measured as an indication of net ion transport across the tissue. SP (〉10−10 M) added to the submucosal side of the tissue caused a transient increase in I sc. Tetrodotoxin (TTX, 10−7 M) decreased the maximum SP response to 11% of the control value. TTX completely inhibited the response to electrical field stimulation but had no effect on I sc increases due to carbachol or theophylline. In the presence of hyoscine (10−7 M) the SP response was reduced to 42% of the control value, but hyoscine had no effect on the TTX-resistant SP response. Mepyramine (10−6 M) had no significant effect on the SP response. These results suggest that SP alters mucosal ion transport by stimulation of cholinergic and non-cholinergic nerves in the mucosa-submucosa. A small part of the SP response appears to be due to a direct action on epithelial cells. The SP antagonist (d-Arg1, d-Pro2, d-Trp7.9, Leu11)-SP decreased the magnitude of the TTX-resistant SP response, and caused a decrease of similar magnitude in the total SP response. These results imply that the major component of the SP response, which is due to an action on neurons, is unaffected by this antagonist. It is concluded that the SP receptors on epithelial cells are blocked by the antagonist and are different to the SP receptors on submucous neurons, which are not blocked by the antagonist.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 307 (1979), S. 57-63 
    ISSN: 1432-1912
    Keywords: Substance P ; Intestine ; Autonomic nervous system ; Peptidergic nerves
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Acid extracts from both normal and extrinsically denervated ileum contained a compound which was indistinguishable from synthetic substance P; this compound was assayed by examining its contractile effect on the longitudinal muscle of segments of ileum in which receptors for acetylcholine and histamine were blocked. Contractions caused by the compound were markedly and selectively antagonized when the ileum was made insensitive to the action of substance P. The activities in the extract and of synthetic substance P were both destroyed by chymotrypsin but were not affected by trypsin or carboxypeptidase B. The concentrations of substance P-like material in normal and extrinsically denervated segments were not significantly different, being equivalent to 0.48 μg of substance P per g of external muscle plus myenteric plexus. A compound with substance P-like activity was liberated by stimulation of intramural nerves, either electrically or by dimethylphenylpiperazinium, in both normal and extrinsically denervated segments of ileum. The release of this compound was prevented by tetrodotoxin and its action on the muscle was blocked when the ileum was made insensitive to the action of substance P. Experiments with transmural stimulation showed that excitatory nerve pathways involving substance P neurons extend for less than 4 cm along the intestine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 247 (1987), S. 377-384 
    ISSN: 1432-0878
    Keywords: Enkephalin ; Gastrin releasing peptide ; Neuropeptide Y ; Somatostatin ; Substance P ; Vasoactive intestinal peptide ; Enteric nervous system ; Intestine, small ; Dog
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The projections of nerve fibres with immunoreactivity for the peptides enkephalin (ENK), gastrin-releasing peptide (GRP), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP) and vasoactive intestinal peptide (VIP) were studied in canine small intestine by analysing the consequences of lesions of intrinsic and extrinsic nerves. Of peptides present in fibres supplying myenteric ganglia, GRP, SOM and VIP were in anally directed nerve pathways, whereas ENK and NPY were in orally directed pathways. Pathways ran for up to about 30 mm. SP fibres ran for short distances in both directions in the myenteric plexus. The circular muscle was supplied with ENK, NPY, SP and VIP fibres arising from the myenteric ganglia, whereas most mucosal SP and VIP fibres were deduced to arise from submucous ganglia. There were projections of fibres reactive for ENK, GRP, SOM, SP and VIP from myenteric ganglia to submucous ganglia. Antibodies to tyrosine hydroxylase were used to locate noradrenaline nerve fibres supplying the intestine; these fibres all disappeared when extrinsic nerves running through the mesentery to the small intestine were cut. It is deduced that there is an ordered pattern of projections of peptide-containing fibres in the canine intestine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0878
    Keywords: Substance P ; Calcitonin gene-related peptide ; Dynorphin ; Cholecystokinin ; Neuropeptide coexistence ; Sensory neurons ; Immunohistochemistry ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The co-existence of immunoreactivities to substance P (SP), calcitonin gene-related peptide (CGRP), cholecystokinin (CCK) and dynorphin (DYN) in neurons of the dorsal root ganglion (DRG) of guinea-pigs has been investigated with a double-labelling immunofluorescence procedure. Four main populations of neurons could be identified that contained different combinations of these peptides and had distinctive peripheral projections: (1) Neurons that contained immunoreactivity to SP, CGRP, CCK and DYN were distributed mainly to the skin. (2) Neurons with immunoreactivity to SP, CGPR and CCK, but not DYN, were distributed mainly to the small blood vessels of skeletal muscles. (3) Neurons with immunoreactivity to SP, CGRP and DYN, but not CCK, were distributed mainly to pelvic viscera and airways. (4) Neurons containing immunoreactivity to SP and CGRP, but not CCK and DYN, were distributed mainly to the heart, systemic blood vessels, blood vessels of the abdominal viscera, airways and sympathetic ganglia. Other small populations of DRG neurons containing SP, CGRP or CCK alone also were detected. Perikarya containing these combinations of neuropeptides were not found in autonomic ganglia. The peripheral axons of neurons containing immunoreactivity to at least SP and CGRP were damaged by chronic treatment with capsaicin. However, some sensory neurons containing CCK alone were not affected morphologically by capsaicin. These results clearly show that individual DRG neurons can contain many different neuropeptides. Furthermore, the combination of neuropeptides found in any particular neuron is related to its peripheral projection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0878
    Keywords: Neuropeptides ; Vascular innervation ; Immunohistochemistry ; Small intestine ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The neuropeptide content of nerve fibers associated with submucosal arteries in the small intestine of guinea pigs was studied in whole-mount preparations using immunohistochemical methods. Tissues were obtained from normal animals or animals in which the small intestine had been extrinsically denervated. In normal animals, submucosal arteries are innervated by extrinsic sensory nerve fibers which contain both substance P and calcitonin gene-related peptide, and by sympathetic noradrenergic nerve fibers. In preparations obtained from animals 5–9 days after denervation, nerve fibers which contained substance P without detectable calcitonin gene-related peptide were associated with a few submucosal arteries. Nerve fibers which contained vasoactive intestinal peptide were also associated with some arteries. By 42–48 days after extrinsic denervation, substance P-containing fibers (without calcitonin gene-related peptide) and vasoactive intestinal peptide-containing fibers were associated with nearly every blood vessel. The extrinsic sympathetic nerve fibers did not regenerate during the course of this study. The nerve fibers associated with submucosal arteries in denervated tissues were not sensitive to capsaicin treatment. The alteration in the innervation of submucosal arterioles that follows extrinsic denervation of the gut may reflect either an increase in the neuropeptide content of the fibers, synthesis of a new peptide, or an increase in the number of fibers as a result of axonal sprouting.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 284 (1996), S. 367-372 
    ISSN: 1432-0878
    Keywords: Key words: Calretinin ; Calcium-binding protein ; Enteric nervous system ; Distal colon ; Taenia coli ; Vasoactive intestinal peptide (VIP) ; Substance P ; γ-Aminobutyric acid (GABA) ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Calretinin is a calcium-binding protein which occurs in neurons and endocrine cells, including neurons throughout the gastrointestinal tract. Calretinin-immunoreactive (IR) neurons innervate the circular muscle in the guinea-pig distal colon and have descending as well as ascending projections. This suggests that calretinin-IR is in motor neurons, but whether it might be in excitatory or inhibitory motor neurons or both was previously undetermined. The presence of calretinin-IR in neurons innervating the taenia coli has not been previously reported. Numerous fibres in the circular muscle of the distal colon and in the taenia coli displayed immunoreactivity for calretinin. Tachykinin (TK), vasoactive intestinal peptide (VIP), calretinin, and γ-aminobutyric acid (GABA) immunoreactivity was also in fibres innervating these targets. The abundances of these fibres was estimated to be TK〉VIP〉calretinin〉GABA. Double label immunohistochemistry revealed the presence in both tissues of populations of calretinin-IR fibres which were also TK-IR, and fibres with calretinin and GABA-IR in the colon, but calretinin-IR fibres were never VIP-IR. TK- and VIP-IR were in separate populations of nerve fibres as were GABA- and TK-IR. It is concluded that calretinin-IR does not provide a definitive labelling of a physiologically known subgroup of motor neurons, either in the distal colon or in the taenia coli, but that calretinin is most likely to be in excitatory motor neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0878
    Keywords: Key words Enteric nervous system ; Tachykinins ; Receptor localisation ; Substance P ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Simultaneous immunofluorescence labelling was used to investigate the patterns of colocalisation of the NK1 tachykinin receptor with other neuronal markers, and hence determine the functional classes of neuron that bear the NK1 receptor in the guinea-pig ileum. In the myenteric plexus, 85% of NK1 receptor-immunoreactive (NK1r-IR) nerve cells had nitric oxide synthase (NOS) immunoreactivity and the remaining 15% were immunoreactive for choline acetyltransferase (ChAT). Of the latter group, about 50% were immunoreactive for both neuropeptide Y (NPY) and somatostatin (SOM), and had the morphologies of secretomotor neurons. Many of the remaining ChAT neurons were immunoreactive for calbindin or tachykinins (TK), but not both. These calbindin immunoreactive neurons had Dogiel type II morphology. No NK1r-IR nerve cells in the myenteric plexus had serotonin or calretinin immunoreactivity. In the submucosal ganglia, 84% of NK1r-IR nerve cells had neuropeptide Y immunoreactivity and 16% were immunoreactive for TK. It is concluded that NK1r-IR occurs in five classes of neuron; namely, in the majority of NOS-immunoreactive inhibitory motor neurons, in ChAT/TK-immunoreactive excitatory neurons to the circular muscle, in all ChAT/NPY/SOM-immunoreactive secretomotor neurons, in a small proportion of ChAT/calbindin myenteric neurons, and in about 50% of ChAT/TK submucosal neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Intestine, small ; Neurons, types ; Myenteric plexus ; Intracellular dye injection (Lucifer yellow) ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The shapes of myenteric neurons in the guineapig small intestine were determined after injecting living neurons with the dye Lucifer yellow via a microelectrode. The cells were fixed and the distribution of Lucifer yellow rendered permanent by an immunohistochemical method. Each of 204 nerve cells was examined in whole-mount preparations of the myenteric plexus and drawn using a camera lucida at 1250 x magnification. Four cell shapes were distinguished: (1) neurons with several long processes corresponding to type II of Dogiel; (2) neurons with a single long process and lamellar dendrites corresponding to type I of Dogiel; (3) neurons with numerous filamentous dendrites; and (4) small neurons with few processes. About 15% of the neurons could not be placed into these classes or into any single class. The type II neurons (39% of the sample) had generally smooth somata and up to 7 (average 3.3) long processes, most of which ran circumferentially. Dogiel type I neurons (34% of sampled neurons) had characteristic lamellar dendrites, i.e., broad dendrites that were flattened in the plane of the plexus. The filamentous neurons (7% of the sample), had, on average, 14 fine processes up to about 50 μm in length. Small neurons with smooth outlines and a few fine processes made up 5% of the neurons encountered. We conclude that myenteric neurons that have been injected with dye can be separated into morphologically distinct classes and that the different morphological classes probably correspond to different functional groupings of neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...