Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 173 (1993), S. 23-34 
    ISSN: 1615-6102
    Keywords: Tip growth ; Actin ; Rhodamine phalloidin ; Electroporation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A dynamic population of cytoplasmic F-actin was observed with electroporated rhodamine phalloidin (RP) staining in growing hyphae ofSaprolegnia ferax. This central actin population was distinct from the fibrillar peripheral network previously described in chemically fixed hyphae in that it was diffuse, pervaded the entire cytoplasm and was most concentrated in the central cytoplasm 8.4 μm from the tip. The peripheral network did not stain with electroporated RP. The apical concentration of central cytoplasmic actin was only present in growing hyphae and developed prior to tip extension. It co-localized with the polarized distribution of mitochondria and endoplasmic reticulum in the tip, suggesting that it functions in positioning these organelles during tip growth. Within the central actin there was a consistent apical cleft which only occurred in growing hyphae and whose position predicted the direction of tip growth. This cleft was coincident with the known accumulation of apical wall vesicles, suggesting that it is either established by vesicle exclusion of the central actin network or is permeated by a portion of the in vivo unstained peripheral network. Photobleaching studies showed that in both growing and non-growing hyphae, cytoplasmic actin continually and rapidly moved from subapical regions to the tip where it accumulated. It mostly moved forward at the rate of tip growth, while some also left the tip, presumably to populate subapical regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 175 (1993), S. 67-74 
    ISSN: 1615-6102
    Keywords: Tip growth ; Actin ; UV microirradiation ; Apical bursting ; Saprolegnia ferax
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The cell walls of plants and fungi are thought to provide the strength required to resist turgor and thus maintain the integrity and morphology of these cells. However, during growth, walls must undergo rapid expansion which requires them to be plastic and therefore weak. In most tip-growing cells there is an apical concentration of F-actin associated with the rapidly expanding cell wall. Disruption of F-actin in the growing tips of hyphae ofSaprolegnia ferax by a localized irradiation, beginning 2–6 μm behind the apex, with actin-selective 270 nm uv light caused the hyphae to burst, suggesting that actin supports the weak apical wall against turgor pressure. Bursting was pH dependent and Ca2+ independent at neutral pH. Hyphae burst in the very tip, where the cell wall is expected to be weakest and actin is most concentrated, as opposed to the lower part of the apical taper where osmotic shock induces bursting when actin is intact. When hyphae were irradiated with a wavelength of light that is less effective at disrupting actin, growth was slowed but they failed to burst, demonstrating that bursting was most likely due to F-actin damage. We conclude that F-actin reinforces the expanding apical wall in growing hyphae and may be the prime stress bearing structure resisting turgor pressure in tip growing cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 170 (1992), S. 46-52 
    ISSN: 1615-6102
    Keywords: Cytoplasmic migration ; Tip growth ; Actin ; Calcium ; UV microirradiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Polarized tip-ward cytoplasmic contractions were induced in hyphae ofSaprolegnia ferax with ultraviolet microirradiations. These unidirectional contractions were similar in appearance and ionic requirements to those previously induced in hyphae ofBasidiobolus magnus, suggesting that the observed inherent cytoplasmic polarity is a general phenomenon. During growth the cytoplasm is continually moving forward with respect to the lateral cell wall and plasma membrane in order to maintain its position in the tip. These contractions may be an exaggerated form of this cytoplasmic migration. F-actin was most concentrated in the contracted cytoplasm, implying that it may be involved in generating the contraction. Contractions were enhanced by external Ca2+ and by irradiating the tip region which is rich in Ca2+ sequestering organelles, suggesting that flooding of the cytoplasm with Ca2+ caused the contractions. H+ did not affect contraction frequency. Neither the change in cytoplasmic consistency that preceded contraction, the contraction itself, nor the F-actin damage induced were confined to the microirradiated zone. This is in keeping with irradiation-induced damage to a network under tension or a flux of diffusible ions causing the response. Thus Ca2+ may regulate actin-myosin interactions that generate cytoplasmic migration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...