Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Anatomy and embryology 195 (1997), S. 491-496 
    ISSN: 1432-0568
    Schlagwort(e): Key words Cementum and bone ; FITC-phalloidin ; Actin filaments ; Alizarin red ; Secondary calcification
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract  The present study was designed to analyze the morphological characteristics of cementocytes and osteocytes. The maxillae of 10-week-old Wistar rats were used for observations. Non-decalcified ground sections stained vitally with fluorescence dyes and decalcified frozen sections stained with FITC-phalloidin were examined by confocal microscopy. Calcein and alizarin red stained the calcification front of bone, cementum, and dentin intensely. In addition, lacunae and canaliculi of cementocytes and osteocytes as well as dentinal canals were stained with the fluorescent dyes. The staining of lacunae and canaliculi was less intense than that of the calcification front of bone, cementum and dentin. The canaliculi of cementocytes and osteocytes were connected with the canaliculi extending from the calcification front of cementum and bone, respectively. The canalicular density was less in the cellular cementum than in the bone. Areas devoid of canaliculi were numerous in the cellular cementum, whereas areas devoid of canaliculi were scarce in the alveolar bone. Further, the lacunae of cementocytes showed various shapes, from oval to tubular, while the lacunae of osteocytes were invariably oval. The cell body and the cytoplasmic processes of cementocytes were positive for FITC-phalloidin within the extracellular matrix of cellular cementum, which was negative. The distribution of actin filaments in the osteocytes and the cementocytes was predominantly cortical and appeared to be closely associated with the cell membrane of the cell bodies and the cytoplasmic processes. Intense staining was seen at the proximal part of the cytoplasmic processes in both osteocytes and cementocytes, showing a punctuated structure of the cells that was more frequent in osteocytes than in cementocytes. The stress fiber known to be present in most of the cultured cells was not evident in the these cells in situ. The cells incorporated in the cementodentinal junction were strongly stained with FITC-phalloidin. The distribution pattern of the cytoplasmic processes stained with FITC-phalloidin was similar to that of the canaliculli stained vitally. The cytoplasmic processes of osteocytes and cementocytes were connected with those of cells lining the surface of bone and cementum. The present result – that lacunae and canaliculi of cementocytes were stained vitally with the fluorescence dyes – suggests that cementocytes may have a role in secondary calcification of cellular cementum. Further, the lower density of cytoplasmic processes in cementocytes than in osteocytes suggests a lack of complexity in the intercellular network within the cellular cementum.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 0003-276X
    Schlagwort(e): Octacalcium phosphate ; Implantation ; Long bone ; Calvarium ; Osteogenesis ; Chondrogenesis ; Type I collagen ; Type II collagen ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin
    Notizen: Background: It is not known whether long bones and calvaria have distinct biological characteristics. Octacalcium phosphate (OCP), which is a precursor phase of the hydroxyapatite, has been reported to stimulate bone formation if implanted in the subperiosteal region of mouse calvaria. The present study was designed to investigate how the long bone and the calvarium respond to OCP implantation and to compare their biological characteristics.Methods: The synthetic OCP was implanted into the subperiosteal region of rat tibiae and parietal bones being mixed with bovine type I collagen treated by pepsin (Atelocollagen). The biological response was examined histologically and immunohistochemically for collagen matrix phenotypes of types I and II to identify bone and cartilage formation.Results: Both chondrogenesis and osteogenesis were initiated in the tibia 1 week after implantation of OCP and most of the cartilage was replaced by bone at week 2. However, the parietal bone did not show osteogenesis responding to OCP implantation until week 3, and no cartilage formation was associated with the osteogenesis.Conclusions: The present study demonstrated the distinct characteristics of biological response to OCP implantation between the long bone and the calvarium in terms of whether or not cartilage formation is involved in the stimulated osteogenesis by OCP, and in terms of timing of the stimulated chondrogenesis and/or osteogenesis, i.e., the parietal bone takes more time to respond to OCP implantation than the tibia. © 1995 Wiley-Liss, Inc.
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 241 (1995), S. 328-336 
    ISSN: 0003-276X
    Schlagwort(e): Mandibular condylar cartilage ; Lateral pterygoid muscle ; Electrical stimulation ; Biomechanical force ; Type I collagen ; Type II collagen ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin
    Notizen: Background: The effects of biomechanical stress on the growth and development of the mandibular condyle have been studied by many investigators. However, the role of the lateral pterygoid muscle in this development is not clear.Methods: Hyperfunction of the lateral pterygoid muscles of male 3-weekold Sprague-Dawley rats was induced by electrical stimulation, and the responses of the mandibular condyles were compared to control tissues by a double-fluorescent staining technique using polyclonal antibodies against type I and type II collagen. Electrical stimulation consisted of repeated application (5 seconds on/5 seconds off) of a Hz current for up to 7 days.Results: In the first 2 days, cartilaginous tissues rich in type II collagen disappeared in the anterior and posterior areas, which were loaded by tensional force due to direct and indirect attachment of the lateral pterygoid muscles. Tissues in these areas were replaced by intramembranous bone that was reactive for type I collagen at 7 days. By the end of the experiment, the trabecula of the condyle was remodled more perpendicularly, thus resisting the compressive force due to hyperfunction of the lateral pterygoid muscles.Conclusions: These results suggest that the activity of the lateral pterygoid muscle might play a significant role in the differentiation of progenitor cells and in the maturation and calcification of chondrocytes in mandibular condyles. © 1995 Wiley-Liss, Inc.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...