Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: NSY mouse ; non-insulin-dependent diabetes mellitus ; animal model ; insulin secretion ; isolated islets
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The NSY (Nagoya-Shibata-Yasuda) mouse was established as an inbred strain of mouse with spontaneous development of diabetes mellitus, by selective breeding for glucose intolerance from outbred Jcl∶ICR mice. NSY mice spontaneously develop diabetes mellitus in an age-dependent manner. The cumulative incidence of diabetes is 98% in males and 31% in females at 48 weeks of age. Neither severe obesity nor extreme hyperinsulinaemia is observed at any age in these mice. Glucose-stimulated insulin secretion was markedly impaired in NSY mice after 24 weeks of age. In contrast, fasting plasma insulin level was higher in male NSY mice than that in male C3H/He mice (545±73 vs 350±40 pmol/l, p〈0.05, at 36 weeks of age). Pancreatic insulin content was higher in male NSY mice than that in male C3H/He mice (76±8 vs 52±5 ng/mg wet weight, p〈0.05, at 36 weeks of age). Morphologically, no abnormal findings, such as hypertrophy or inflammatory changes in the pancreatic islets, were observed in NSY mice at any age. These data suggest that functional changes of insulin secretion in response to glucose from pancreatic beta cells may contribute to the development of non-insulin-dependent diabetes mellitus (NIDDM) in the NSY mouse. Although insulin sensitivity was not measured, fasting hyperinsulinaemia in NSY mice suggests that insulin resistance may also contribute to the pathogenesis of NIDDM. Since these findings are similar to the pathophysiologic features of human NIDDM patients, the NSY mouse is considered to be useful for investigating the pathogenesis and genetic predisposition to NIDDM.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Key words NSY mouse ; non-insulin-dependent diabetes mellitus ; animal model ; insulin secretion ; isolated islets.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The NSY (Nagoya-Shibata-Yasuda) mouse was established as an inbred strain of mouse with spontaneous development of diabetes mellitus, by selective breeding for glucose intolerance from outbred Jcl:ICR mice. NSY mice spontaneously develop diabetes mellitus in an age-dependent manner. The cumulative incidence of diabetes is 98 % in males and 31 % in females at 48 weeks of age. Neither severe obesity nor extreme hyperinsulinaemia is observed at any age in these mice. Glucose-stimulated insulin secretion was markedly impaired in NSY mice after 24 weeks of age. In contrast, fasting plasma insulin level was higher in male NSY mice than that in male C3H/He mice (545 ± 73 vs 350 ± 40 pmol/l, p 〈 0.05, at 36 weeks of age). Pancreatic insulin content was higher in male NSY mice than that in male C3H/He mice (76 ± 8 vs 52 ± 5 ng/mg wet weight, p 〈 0.05, at 36 weeks of age). Morphologically, no abnormal findings, such as hypertrophy or inflammatory changes in the pancreatic islets, were observed in NSY mice at any age. These data suggest that functional changes of insulin secretion in response to glucose from pancreatic beta cells may contribute to the development of non-insulin-dependent diabetes mellitus (NIDDM) in the NSY mouse. Although insulin sensitivity was not measured, fasting hyperinsulinaemia in NSY mice suggests that insulin resistance may also contribute to the pathogenesis of NIDDM. Since these findings are similar to the pathophysiologic features of human NIDDM patients, the NSY mouse is considered to be useful for investigating the pathogenesis and genetic predisposition to NIDDM. [Diabetologia (1995) 38: 503–508]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 98 (1994), S. 373-378 
    ISSN: 1432-1106
    Keywords: Otolith ; Utricular nerve ; Vestibulocollic reflex ; Neck flexor motoneuron ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We studied the circuitry between the utricular (UT) nerve and ventral neck motoneurons innervating the longus capitis (LC), a neck flexor muscle, in decerebrate cats. We recorded intracellularly from 63 LC (ipsilateral 37, contralateral 26) motoneurons in C1 and C2 segments. UT nerve stimulation evoked disynaptic, excitatory postsynaptic potentials in all ipsilateral LC motoneurons, and inhibitory postsynaptic potentials that were at least trisynaptic in almost all contralateral LC motoneurons. UT effects on neck motoneurons innervating muscles involved in flexion and lateral turning are similar to the connections between the UT nerve and neck extensor motoneurons. These neuron circuits may play a role in fixing the head and the neck to the body during horizontal linear acceleration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 112 (1996), S. 197-202 
    ISSN: 1432-1106
    Keywords: Utricular nerve ; Vestibulospinal neuron ; Lateral and medial vestibulospinal tracts ; Vestibular nuclei ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The axonal pathway, conduction velocities, and locations of the cell bodies of utricular nerve-activated vestibulospinal neurons were studied in decerebrated or anesthetized cats using the collision test of orthodromic and antidromic spikes. For orthodromic stimulation, bipolar tungsten electrodes were placed on the utricular nerve and the other vestibular nerve branches were transected. Monopolar tungsten electrodes were positioned on both sides of the upper cervical segments (C2–4), caudal end of the cervical enlargement (C7-T1), and from the lower thoracic to the upper lumbar segments (T12-L3) and were used for antidromic stimulation of the spinal cord. Another monopolar electrode was also placed in the oculomotor nucleus to study whether utricular nerve-activated vestibulospinal neurons have ascending branches to the oculomotor nucleus. Of the 173 vestibular neurons orthodromically activated by the stimulation of the utricular nerve, 46 were second-order vestibulospinal neurons and 5 were third-order neurons. The majority of the utricular nerve-activated vestibulospinal neurons were located in the rostral part of the descending vestibular nucleus and the caudal part of the ventral lateral nucleus. Seventy-three percent of the utricular nerve-activated vestibulospinal neurons descended through the ipsilateral lateral vestibulospinal tract. Approximately 80% of these neurons reached the cervicothoracic junction, but a few reached the upper lumbar spinal cord. Twenty-seven percent of the utricular nerve-activated vestibulospinal neurons descended through the medial vestibulospinal tract or the contralateral vestibulospinal tracts. Those axons terminated mainly in the upper cervical segments. Almost none of the utricular nerve-activated vestibular neurons had ascending branches to the oculomotor nucleus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...