Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Visually evoked potentials  (2)
  • Extrastriate cortex  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 179 (1996), S. 785-795 
    ISSN: 1432-1351
    Keywords: Birds ; Visual system ; Tectofugal pathway ; Extrastriate cortex ; Mammals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The responses of single cells to computer-generated spots, bars, gratings, and motion-in-depth stimuli were studied in the ectostriatum and the adjacent neostriatum of the zebra finch, Taeniopygia guttata. No differences in neuronal properties could be detected between ectostriatum and neostriatum. The receptive fields of ectostriatal neurons are large, often extending over the entire visual field of the contralateral eye, and have oddly defined borders. The centers of the receptive fields, located in the foveal region, generally yielded better responses than the periphery, and exhibited different subdivisions. Neurons responded selectively to moving bars, preferring those moving parallel to their longest axis. An SDO (sensitivity, direction, orientation) analysis of responses to sinusoidal gratings showed that all orientations were equally represented by ectostriatal neurons, while there was a slight preference for forward and upward movements. The neurons also showed preferences for gratings of a particular spatial frequency, and responded vigorously to stimuli moving towards the eye (“looming”). Our results indicate that the ectostriatum is involved in both detecting displacement of the surround and in stimulus identification. By comparison with results obtained in the extrastriate cortex of mammals, it is concluded that the homology of the ectostriatum with the extrastriate cortex of mammals, which was proposed on the basis of hodological findings, is supported by our study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 74 (1989), S. 563-572 
    ISSN: 1432-1106
    Keywords: Zebra finch ; Visually evoked potentials ; Ectostriatum ; Ipsi- and contralateral stimulus responses ; Current source-density analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Recent research has demonstrated that ipsilaterally visually evoked potentials (VEPs) can be measured within the ectostriatum, the telencephalic target area of the tectofugal visual pathway in birds. In this paper we systematically measured contra- and ipsilateral VEPs within the ectostriatal complex to obtain more detailed information on the processing of contra- and ipsilateral stimuli. The similarity of neighbouring VEPs at equal depth and a comparison of a one dimensional and a three dimensional analysis of current source-densities (CSDs) for identical coordinates suggested that a one dimensional current source-density analysis might be applicable. The one dimensional current source-density analysis demonstrated largely corresponding patterns in the sink — source sequences of the current source-density depth profiles for the contra- and ipsilateral stimulus responses. The occurrence of a large sink in the centre of the ectostriatal core, together with the results of multiunit recordings, shows that the ectostriatal core is the location of the generators for both the contra- and the ipsilaterally evoked responses. The occurrence of macroscopic sinks and sources and the fact that VEPs can be recorded from the ectostriatum shows that there is a higher degree of order in the ectostriatum than has been previously demonstrated by anatomical methods. The time coincidence between the maximum spike rate of multiunit responses, the negative peak of the evoked potential, and the large central sink demonstrates that the influence of ipsi- as well as of contralateral stimuli is predominantly excitatory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Zebra finch ; Visually evoked potentials ; Ectrostriatum ; Ipsilateral stimulus responses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The tectofugal pathway in birds has been reported to process primarily information from the contralateral eye. Although this pathway has access to the contralateral hemisphere by various connections, electrophysiological recordings up to now have failed to demonstrate any excitatory influence of visual stimulation in the higher stations of this pathway. This study is the first to demonstrate an excitatory projection from the ipsilateral eye to the telencephalic projection area of the tectofugal pathway by recordings of visually evoked potentials in the ectostriatum. The excitatory projection probably leads from the eye to the contralateral tectum opticum, then recrosses back to the nucleus rotundus of the ipsilateral side where it reaches the ectostriatum. In normal birds, the ipsilateral stimulus responses in the ectostriatum are smaller in amplitude and have a longer latency than responses to contralateral stimuli. In unilaterally enucleated birds, the ipsilateral response is enhanced in the ectostriatum and can be detected in the nucleus rotundus, too. The results suggest that in normal birds the ipsilateral response is inhibited to a high degree by spontaneous activity of the contralateral eye. Possibly, this counterbalanced inhibition provides a mechanism for weighting information from the left and right eye field in order to ensure adequate processing of stimuli.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...