Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1617-4623
    Keywords: Key words DNA mismatch repair ; Mismatch recognition ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have analysed the correction of defined mismatches in wild-type and msh2, msh3, msh6 and msh3 msh6 mutants of Saccharomyces cerevisiae in two different yeast strain backgrounds by transformation with plasmid heteroduplex DNA constructs. Ten different base/base mismatches, two single-nucleotide loops and a 38-nucleotide loop were tested. Repair of all types of mismatches was severely impaired in msh2 and msh3 msh6 mutants. In msh6 mutants, repair efficiency of most base/base mismatches was reduced to a similar extent as in msh3 msh6 double mutants. G/T and A/C mismatches, however, displayed residual repair in msh6 mutants in one strain background, implying a role for Msh3p in recognition of base/base mismatches. Furthermore, the efficiency of repair of base/base mismatches was considerably reduced in msh3 mutants in one strain background, indicating a requirement for MSH3 for fully efficient mismatch correction. Also the efficiency of repair of the 38-nucleotide loop was reduced in msh3 mutants, and to a lesser extent in msh6 mutants. The single-nucleotide loop with an unpaired A was less efficiently repaired in msh3 mutants and that with an unpaired T was less efficiently corrected in msh6 mutants, indicating non-redundant functions for the two proteins in the recognition of single-nucleotide loops.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 252 (1996), S. 275-283 
    ISSN: 1617-4623
    Keywords: Key words DNA mismatch repair ; MluI cell cycle box ; Mutation ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Transcription of the Saccharomyces cerevisiae DNA mismatch repair genes PMS1, MSH2, and MSH6, a recently discovered homolog of the Escherichia coli mutS gene, was shown to be cell cycle regulated. In contrast, transcription of the MSH1, MSH3 and MLH1 genes was not regulated during the cell cycle. The MSH1 gene, which is thought to be involved in DNA mismatch repair in mitochondria, was also not induced under aerobic growth conditions. Regulation of the PMS1 gene was dependent on intact MluI cell cycle boxes, as demonstrated by analysis of a promoter mutant. Both reduced and increased expression of PMS1 resulted in a mitotic mutator phenotype. Analysis of mRNA levels was performed with a newly developed reverse transcription-PCR (polymerase chain reaction) approach using fluorescently labeled primers and an automated DNA sequencer for detection of PCR products.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 252 (1996), S. 275-283 
    ISSN: 1617-4623
    Keywords: DNA mismatch repair ; MluI cell cycle box ; Mutation ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transcription of theSaccharomyces cerevisiae DNA mismatch repair genesPMS1, MSH2, andMSH6, a recently discovered homolog of theEscherichia coli mutS gene, was shown to be cell cycle regulated. In contrast, transcription of theMSH1, MSH3 andMLH1 genes was not regulated during the cell cycle. TheMSH1 gene, which is thought to be involved in DNA mismatch repair in mitochondria, was also not induced under aerobic growth conditions. Regulation of thePMS1 gene was dependent on intactMluI cell cycle boxes, as demonstrated by analysis of a promoter mutant. Both reduced and increased expression ofPMS1 resulted in a mitotic mutator phenotype. Analysis of mRNA levels was performed with a newly developed reverse transcription-PCR (polymerase chain reaction) approach using fluorescently labeled primers and an automated DNA sequencer for detection of PCR products.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...