Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 121 (1990), S. 21-30 
    ISSN: 1573-5036
    Keywords: actual N loss ; flooded soils ; 15N balance ; potential N loss ; urea ; water-soluble N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract One day after application, urea-N remaining in the floodwater and determined as water-soluble N (urea-N + NH4 +-N) was used to calculate the potential N loss from lowland rice soils. Actual N loss calculated from 15N balance measurements using forced air exchange (airflow rate: 20 L min-1) in greenhouse pots. Conditions for variable potential N loss were created by manipulating the method of urea application and duration of presubmergence or by selecting soils with diverse cation exchange capacities (CEC). Potential N loss tended to be lower than actual N loss; the differences were, however, nonsignificant. The method of urea application that led to the lowest potential N loss from a Guthrie silty clay loam (Typic Fragiaquult) also led to the least 15N loss and vice-versa (r=0.99**). Duration of presubmergence did not alter the relationship between potential and actual N loss although it influenced the rate of urea hydrolysis in floodwater. The primary depencence of actual N loss on water-soluble N was maintained in soils differing in CEC (r=0.83**). The association between potential and actual N loss was closer for high-CEC soils (≥ 20 cmol [+] kg-1 soil, r=0.91**) than for low-CEC soils (〈20 cmol [+] kg-1 soil, r=0.85**). Ammonia volatilization could be more closely predicted by potential N loss than could apparent denitrification. The results of this study suggest that potential N loss calculated from one-time determination of water-soluble N in floodwater can be a good index of actual N loss from flooded, puddled rice soils. Notable exceptions are to be expected for soils in which water-soluble N gets lost from floodwater either before (soils with fast urea hydrolysis in floodwater) or after (soils with steady leaching) determination of potential N loss.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 122 (1990), S. 21-30 
    ISSN: 1573-5036
    Keywords: actual N loss ; flooded soils ; 15N balance ; potential N loss ; urea ; water-soluble N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract One day after application, urea-N remaining in the floodwater and determined as water-soluble N (urea-N + NH4 +-N) was used to calculate the potential N loss from lowland rice soils. Actual N loss calculated from15N balance measurements using forced air exchange (airflow rate: 20 L min-1) in greenhouse pots. Conditions for variable potential N loss were created by manipulating the method of urea application and duration of presubmergence or by selecting soils with diverse cation exchange capacities (CEC). Potential N loss tended to be lower than actual N loss; the differences were, however, nonsignificant. The method of urea application that led to the lowest potential N loss from a Guthrie silty clay loam (Typic Fragiaquult) also led to the least15N loss andvice-versa (r=0.99**). Duration of presubmergence did not alter the relationship between potential and actual N loss although it influenced the rate of urea hydrolysis in floodwater. The primary depencence of actual N loss on water-soluble N was maintained in soils differing in CEC (r=0.83**). The association between potential and actual N loss was closer for high-CEC soils (≥ 20 cmol [+] kg-1 soil, r=0.91**) than for low-CEC soils (〈20 cmol [+] kg-1 soil, r=0.85**). Ammonia volatilization could be more closely predicted by potential N loss than could apparent denitrification. The results of this study suggest that potential N loss calculated from one-time determination of water-soluble N in floodwater can be a good index of actual N loss from flooded, puddled rice soils. Notable exceptions are to be expected for soils in which water-soluble N gets lost from floodwater either before (soils with fast urea hydrolysis in floodwater) or after (soils with steady leaching) determination of potential N loss.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...