Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-6903
    Keywords: Neurotoxicity of ammonia and fatty acids ; ammonia and fatty acyl CoA inhibition of mitochondrial dehydrogenases ; brain mitochondria ; metabolic encephalopathies ; hyperammonemia ; organic acidemia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In several metabolic encephalopathies, hyperammonemia and organic acidemia are consistently found. Ammonia and fatty acids (FAs) are neurotoxic: previous workers have shown that ammonia and FAs can act singly, in combination, or synergistically, in inducing coma in experimental animals. However, the biochemical mechanisms underlying the neurotoxicity of ammonia and FAs have not been fully elucidated. FAs are normally converted to their corresponding CoA derivatives (CoAs) once they enter cells and it is known that these fatty acyl CoAs can alter intermediary metabolism. The present study was initiated to determine the effects of ammonia and fatty acyl CoAs on brain mitochondrial dehydrogenases. At a pathophysiological level (2 mM), ammonia is a potent inhibitor of brain mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC). Only at toxicological levels (10–20 mM) does ammonia inhibit brain mitochondrial NAD+- and NADP+-linked isocitrate dehydrogenase (NAD-ICDH, NADP-ICDH), and NAD+-linked malate dehydrogenase (MDH) and liver mitochondrial NAD-ICDH. Butyryl- (BCoA), octanoyl- (OCoA), and palmitoyl (PCoA) CoA were potent inhibitors of brain mitochondrial KGDHC, with IC50 values of 11, 20, and 25 μM, respectively; moreover, the inhibitory effect of fatty acyl CoAs and ammonia were additive. At levels of 250 μM or higher, both OCoA (IC50=1.15 mM) and PCoA (IC50=470 μM) inhibit brain mitochondrial NADP-ICDH; only at higher levels (0.5–1 mM) does BCoA inhibit this enzyme (by 30–45%). Much less sensitive than KGDHC and NADP-ICDH, brain mitochondrial NAD-ICDH is only inhibited by 1 mM BCoA, OCoA, and PCoA by 22%, 35%, and 44%, respectively. Even at 1 mM, OCoA and PCoA (but not BCoA) only slightly inhibited brain mitochondrial MDH (by 23%). In the presence of toxicological levels of ammonia (20 mM) and fatty acyl CoAs (1 mM), the inhibitory effect of fatty acyl CoAs and ammonia on brain mitochondrial NAD-ICDH, NADP-ICDH, and MDH are only partially additive. These results provide some support for our hypothesis that selective inhibition of a rate-limiting and regulated enzymatic step (e.g., KGDHC) by ammonia and fatty acyl CoAs may be one of the major mechanisms underlying the neurotoxicity of ammonia and FAs. The data also suggest that the same mechanism may acocunt for the synergistic effect of ammonia and FAs in inducing coma. Since the inhibition of KGDHC by ammonia and fatty acyl CoAs occurs at pathophysiological levels, the results may assume some pathophysiological and/or pathogenetic importance in metabolic encephalopathies in which hyperammonemia and organic acidemia are persistent features.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...