Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Paper filter  (1)
  • asymptotic expansion techniques impulsively heated horizontal circular cylinder  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 32 (1998), S. 329-355 
    ISSN: 1573-1634
    Keywords: mixed convection ; asymptotic expansion techniques impulsively heated horizontal circular cylinder
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract The mixed convection caused when a horizontal circular cylinder is suddenly heated is investigated in the situation when the initial flow past the cylinder is uniform and its direction either upwards or downwards. An analytical series solution, which is valid at small times, is obtained using the matched asymptotic expansions technique. A numerical solution, which is valid at all times and for any values of the Rayleigh and Péclet numbers, is also obtained using a fully implicit finite-difference method. Three different regimes, when either the free or forced convection is dominant or when they have the same order of magnitude, are considered. In the free convection dominated regime, two vortices develop near the sides of the cylinder in both situations of an upward or downward external flow. Comparisons between the analytical and numerical results at small times, as well as a detailed discussion of the evolution of the numerical solution are presented. The numerical results obtained for large Rayleigh, Ra, and Péclet Pe, numbers show that a thermal boundary-layer forms adjacent to the cylinder for any value of the ratio Ra/e. The steady state boundary-layer analysis, similar to that performed by Cheng and Merkin, is analysed in comparison to the numerical solution obtained for large values of Ra and Pe at very large times.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 19 (1994), S. 889-903 
    ISSN: 0271-2091
    Keywords: SIMPLE-like algorithm ; Average pressure correction ; Paper filter ; Turbulent flow ; Sampler ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The control volume, finite difference method and the k-∊ tubulence model are employed in a numerical simulation of the turbulent fluid flow both outside and inside a blunt cylindrical sampler which houses a paper filter in its chamber. The presence of a paper filter, which has a very large resistance, results in a large pressure drop across the filter and this causes difficulties in making the SIMPLE or the SIMPLEC scheme converge. In order to improve the rate of convergence of the SIMPLE-like algorithm when the resistance of the filter is very large, an average pressure correction formula is proposed. Based on global mass conservation, a line average pressure correction for the paper filter is derived using a modified Darcy law for a porous medium. A combination of this formula and the SIMPLE-like algorithm can rapidly build up the pressure drop across the filter and hence dramatically improve the rate of convergence of the iterative scheme. Comparisons of the convergence histories and the numerical results for the fluid flow when using SIMPLE and SIMPLEC with the average pressure correction method show that the average pressure correction method for dealing with the paper filter significantly accelerates the rate of convergence of the iterative scheme.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...