Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 16 (1996), S. 635-650 
    ISSN: 1572-8986
    Keywords: Thermal plasmas ; argon ; transport properties ; viscosity ; interatomic potentials ; collision integrals ; calculations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Reliable values of the viscosity in thermal argon plasmas are most important for our understanding of the momentum transfer and for realistic modeling of various plasma applications. Despite numerous attempts to determine reliable viscosity values over the last three decades, discrepancies still exist among the data reported by different authors. In this paper, a critical analysis is undertaken of calculated and experimental data of the argon viscosity based on recent publications. Our recalculation of viscosities in thermal argon plasmas are performed by using Lennard-Jones, Morse, Aziz, and exponential repulsive potentials for Ar-Ar atom interactions in different temperature ranges from 300 to 20,000 K. The contributions of elastic collisions of e-Ar, e-Ar+, and Ar+-Ar, as well as charge exchange of Ar+-Ar, to the viscosity become important with increasing temperature and degree of ionization in argon plasmas. Based on a critical analysis and recalculations, improved values of the argon viscosity are recommended, covering temperatures from 300 to 20,000 K. Polynomial expressions have been developed for calculating argon viscosities, which will be useful for numerical work and other applications of thermal argon plasmas at atmospheric pressure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 567-588 
    ISSN: 0271-2091
    Keywords: multiblock ; turbulent flow ; computational modelling ; parallel computing ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A multiblock algorithm for general 2D and 3D turbulent flows is introduced and applied to three cases: a compressor cascade passage, a two-element high-lift aerofoil and a round-to-square transition duct. The method is a generalization of a single-block scheme which is based on a non-orthogonal, fully collocated finite volume framework, applicable to incompressible and compressible flows and incorporating a range of turbulence transport models, including second-moment closure. The multiblock implementation is essentially block-unstructured, each block having its own local co-ordinate system unrelated to those of its neighbours. Any one block may interface with more than one neighbour along any one block face. Interblock communication is handled by connectivity matrices and effected via a two-cell overlap region along block boundaries in which ‘halo data’ reside. The algorithm and the associated data communication are explained in detail, and its effectiveness is verified, with particular reference to improved numerical resolution and parallel computing.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...