Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical crystallography 25 (1995), S. 463-467 
    ISSN: 1572-8854
    Keywords: 1,3-dithiole-4-carboxamides ; resonance effect ; short intramolecular S...O contact ; crystal structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The two closely related compoundsN,N-dimethyl 5-(methylthio)-2-thioxo-1,3-dithiole-4-carboxamide1 andN-(p-methoxy-phenyl)-N-methyl 5-(methylthio)-2-thioxo-1,3-dithiole-4-carboxamide2 have been characterized by X-ray crystal structure determination. Crystal data for1: triclinic, $$P\bar 1$$ ,a=6.767(1),b=12.594(2),c=6.648(1) Å, α=101.38(1), β=93.37(2), γ=79.62(1)°,V=546.2 Å3,Z=2. Crystal data for2: monoclinic, Cc,a=19.836(4),b=6.057(1),c=15.860(3) Å, β=127.61(3)°,V=1509.5Å3,Z=4. The molecular structures of1 and2 show remarkable differences concerning the conformational behavior. These differences are related to the nature of the substituents at the nitrogen atom. The presence of an aromatic system in2 leads to an almost planar arrangement of the α-oxoketene dithioacetal moiety. This effect is accompanied by a short intramolecular S...O contact of 2.648(2) Å. In the absence of an aromatic system, as is the case for compound1, neither a resonance effect along the α-oxoketene dithioacetal fragment nor a short S...O distance is observed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-1948
    Keywords: Tetrapodal pentadentate ligand ; Square pyramidal coordination cap ; Pentaamine ; Nickel(II) complexes ; Magnetochemistry ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The architecture of the tetrapodal pentaamine ligand 2,6-bis(1′,3′-diamino-2′-methylprop-2′-yl)pyridine (pyN4, 1) allows it to coordinate to nickel(II) as a square pyramidal coordination cap. The pyridine nitrogen atom occupies an apical position of the coordination octahedron, while four equivalent pendent primary amino groups occupy the equatorial positions, with a sixth coordination site remaining for a monodentate ligand. Exchange of this ligand is facile, and a series of complexes [(1)NiX]n+ (X = OH2, OClO3, NCS, N3, {Cl-Ni(pyN4)}) has been prepared and characterised by elemental analysis, IR and UV/Vis spectroscopies (as applicable), and X-ray structure determination. While the solid state structures show varying degrees of distortion of the ligand cap 1 from C2v symmetry, a polynucleating coordination mode has not been observed. The ligand enables the synthesis of dinuclear nickel(II) complexes containing a single bridging ligand, as exemplified by the singly -chloro bridged complex [(1)Ni-Cl-Ni(1)](PF6)3. This complex has an antiferromagnetically coupled ground state of total spin ST = 0, as determined from variable-temperature magnetic susceptibility measurements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 1999 (1999), S. 341-348 
    ISSN: 1434-1948
    Keywords: N ligands ; S ligands ; Iron ; Ruthenium ; Pentadentate ligands ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In order to obtain iron and ruthenium complexes which are analogous to [M(L)(′NHS4′)] and [M(L)(′N2H2S3′)] complexes [′NHS4′2- = 2,2′-bis(2-mercaptophenylthio)diethylamine(2-), ′N2H2S3′2- = 2,2′-bis(2-mercaptophenylamino)diethylsulfide(2-)] but have electron-richer metal centers, the new pentadentate amine thiolate ligand ′N3H3S2′-H2 [ = 2,2′-bis(2-mercaptophenylamino)diethylamine] (4) was synthesized. The dianion ′N3H3S2′2- reacted with FeII salts to give high-spin [Fe(′N3H3S2′)] (5) [μeff (293 K) = 3.94 μB], which yielded diamagnetic [Fe(CO)(′N3H3S2′)] (6) upon reaction with CO. Complex 6 exhibits a low-frequency ν(CO) band (1934 cm-1 in THF) indicating an electron-rich Fe center and a strong Fe-CO bond. In spite of this, 6 readily dissociated in solution to 5 and CO. The reaction of [RuCl2(PPh3)3] with ′N3H3S2′2- yielded [Ru(PPh3)(′N3H3S2′)] (7), which proved inert with respect to PPh3 substitution but could be methylated at the thiolate donors. The resulting [Ru(PPh3)(′N3H3S2′-Me2)]I2 (8) proved as inert towards substitution as 7. Complex 8 could reversibly be deprotonated to give [Ru(PPh3)(′N3H2S2′-Me2)]I (11), in the course of which the [RuPN3S2] cores rearrange from CS to C1 symmetry. Reversible protonation/deprotonation was also found with [Ru(NO)(′N3H2S2′)] (9) which formed from [RuCl3(NO)(PPh3)2] and ′N3H3S2′2- in the presence of one additional equivalent of LiOMe. Protonation of 9 with HBF4 gave [Ru(NO)(′N3H3S2′)]BF4 (10). The NMR spectra and the X-ray structure analysis of 8 proved that the [RuPN3S2] cores of 7 and 8 exhibit a CS-symmetrical meso structure. In all other complexes, however, the [MLN3S2] cores exhibit a C1-symmetrical structure. It results from the fac-mer coordination mode of the ′N3H3S2′2- ligand and favors the planarization of amide donors when NH functions are reversibly deprotonated.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 1999 (1999), S. 1715-1725 
    ISSN: 1434-1948
    Keywords: Nickel complexes ; Platinum complexes ; S ligands ; C-S cleavage ; Hydride complexes ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Nickel and platinum complexes with tridentate ligands, having [S3] or [NS2] donor sets were investigated in order to model active sites of enzymes such as hydrogenases or CO dehydrogenases. Starting from diphenyl sulfide, a preparative synthesis was developed for ‘S3’-H2 [‘S3’-H2 = bis(2-mercaptophenyl) sulfide]. Reactions of ‘S3’-H2 or anionic ‘S3’2- with nickel and platinum precursors resulted in the formation of binuclear [Ni(‘S3’)]2 (1) and trinuclear [Pt(‘S3’)]3 (5). Complex 1 was cleaved by PMe3 or CN- to give the mononuclear complexes [Ni(‘S3’)(PMe3)] (2) and NMe4[Ni(‘S3’)(CN)] (3). Attempts to coordinate hydride to the [Ni(‘S3’)] fragment led to C-S bond cleavage of the ligand and formation of (NMe4)2[{Ni(μ-SC6H5)(S2C6H4)}2] (4). Oxidative addition of Li[‘S3’-H] to [Pt(PPh3)4] afforded the platinum hydride complexes Li[Pt(H)(‘S3’)] and Li[Pt(H)(PPh3)(‘S3’)] which, however, could not be separated from each other and yielded [Pt(‘S3’)(PPh3)] (6) when treated with MeOH. In order to investigate electronic effects of the donor set, the ‘S3’ ligand was modified by alkylation of one thiol group to give ‘RS3’-H derivatives (R = Me, Et, Cy) and by replacing a mercaptophenyl unit by an amine in ‘Et2NS2’-H [‘Et2NS2’-H = N,N-diethyl-2-(2-mercaptothiophenyl)ethylamine]. Reactions of NiII or Ni0 compounds with these ligands in a 1:1 ratio yielded the 1:2 complexes [Ni(‘MeS3’)2] (7), [Ni(‘EtS3’)2] (9) and [Ni(‘CyS3’)2] (10), with ‘RS3’- acting as bidentate ligands only. Complex 7 reversibly reacted with PMe3 to form cis-[Ni(PMe3)2(‘MeS3’)2] (8), exhibiting monodentate ‘MeS3’ ligands. [Ni(‘Et2HNS2’)2]Br2 (11) reacted reversibly with bases to presumably give octahedral [Ni(‘Et2NS2’)2]. Complexes 7, 9 and 10 also did not yield any [Ni(‘RS3’)(H)] hydride complex when treated with hydride sources. Oxidative addition of ‘CyS3’-H to [Pt(PPh3)4] yielded the hydride complexes [Pt(H)(‘CyS3’)] and [Pt(H)(PPh3)(‘CyS3’)] which, however, formed an inseparable mixture and underwent C-S bond cleavage when heated, affording [Pt(o-S2C6H4)(PPh3)2]. The molecular structures of 1, 2, 3, 5, 6, 7, and 11 were determined by X-ray crystallography, revealing butterfly-like shapes for the [MS3L] cores of the complexes.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 1999 (1999), S. 2147-2156 
    ISSN: 1434-1948
    Keywords: Tetrapodal pentadentate ligand ; Ligand periphery ; Polydentate amine complex ; Nickel ; Podand ; Schiff base ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The tetrapodal pentaamine ligand 2,6-bis(1′,3′-diamino-2′-methylprop-2′-yl)pyridine (1), which contains four equivalent primary amino groups, can be derivatised partly or completely by Schiff base condensation with suitable carbonyl compounds. The new ligands thus obtained are mononucleating, as shown by the X-ray crystal structures of their respective nickel(II) complexes. Reaction of 1 with 1 equiv. of salicylaldehyde and subsequent reduction allows the selective modification of one of the four sidearms. The resulting ligand 2 is hexadentate and uninegative in its nickel(II) complex {[(2)Ni]PF6} (3) with both the secondary amine and the phenoxide functionalities coordinated to the metal centre. The unreduced Schiff base form of the ligand, 4, does not form a complex with nickel(II) as readily, and only a small quantity of the mixed salt {[(4)Ni][(1)Ni(H2O)](Br)2(PF6)} (5)has been obtained. While the overall coordination of 4 resembles that of 2, there is considerably more strain in the appended chelate ring, due to the presence of the C=N double bond. Modification of one arm in 1 can also be achieved by condensation with 1 equiv. of acetylacetone, to give the new ligand 6 which, likewise, is hexadentate in its NiII complex {[(6)Ni](PF6)2} (7). In this case, however, the N/O-functional sidearm is not deprotonated. Rather, it is coordinated as the keto-imine tautomer, making 7 a rare example of a metal complex containing this structural fragment. Two-fold functionalisation of 1 is observed upon reaction with acetone, regardless of whether the ketone is present in stoichiometric amounts or in excess, to give the pentadentate ligand 8with two diagonally juxtaposed isopropylidene-imine units. The complex isolated with this ligand {[(8)Ni](PF6)2} (9) contains pentacoordinate NiII, the sixth coordination site being blocked by the rigidly positioned isopropylidene groups. When reacted with 4 equiv. of trans-cinnamaldehyde, all the primary amino groups in 1 condense to give the four-fold Schiff base 10, which acts as a pentadentate podand towards nickel(II). In this complex, {[(10)Ni(OH2)]Br2} (11), an aqua ligand completes the coordination octahedron. All ligands are stable towards hydrolysis when coordinated to the metal, despite the presence of alkyl-imine groups in some cases.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1434-1948
    Keywords: Lead(1+) ; Indium(3+) ; Organylphosphanylamide complexes ; Phosphazene ; 207Pb-NMR spectra ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The reaction of PbCl2 with LiN(PPh2)2 (1) at -78°C affords the P-P coupled phosphazene Ph2P-N=PPh2-PPh2=N-PPh2 (2) as an oxidation product and, as a reduction equivalent, the novel lead(1+) complex [(Pb1+)2(μ-Ph2P···N···PPh2-)2](Pb-Pb) (3). The crystal structure determination of the red compound 3 shows a Pb-Pb bond length of 304.1(1) pm. The 31P- and 207Pb-NMR spectra of 3 are complicated due to the presence of a higher order spin system (AA′A′′A′′′X for the mono-207Pb isotopomer, AA′A′′A′′′XX′ for the bis-207Pb isotopomer). Simulations of the 31P and 207Pb spectra both on material with natural isotope abundance and on the 207Pb-labelled compound (3*) reveal a large Pb,Pb coupling constant of 7708 Hz, indicative of a covalent Pb-Pb bond. - Though InCl3 is diagonally related to PbCl2, no significant redox process is observed in the reaction between InCl3 and 1. The yellow crystals of [In3+(Ph2P···N···PPh2-)3] (4) that are obtained were also investigated by X-ray analysis. These show a propeller-like configuration of the three four-membered chelate rings with indium(3+) as the centre.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1434-1948
    Keywords: S ligands ; P ligands ; Osmium ; Solvent effects ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In search for osmium complexes with sulfur-dominated coordination spheres that potentially bind and activate or stabilize nitrogenase relevant small molecules, several osmium-sulfur complexes containing 1,2-bis(2-mercaptophenylthio)ethane(2-) (′S4′2-) and benzenedithiolate (′S2′2-) ligands were synthesized. [OsII(PR3)2(′S4′)] [R = Ph (1), Et (2)], [OsIV(PR3)2(′S2′)2] [R = Et (3), Pr(4), Me(5), Ph(6)], [OsIV(PCy3)(′S2′)2] (7), (PHCy3)[OsIII(′S2′)2] (8a), (NMe4)[OsIII(′S2′)2] (8b), and (NBu4)2[OsIV(′S2′)3] (9b) were obtained in reactions starting from commercially available osmium compounds and the sulfur and phosphane ligands. The presence or absence of reducing solvents strongly influenced these reactions. Octahedral (3), (4), and (PHCy3)2[OsIV(′S2′)3] (9a) were characterized by X-ray structure analysis, leading to the conclusion that despite the high oxidation state of the osmium centers, innocent dithiolate ligands are present. The stabilization of the OsIV centers is traced back to S→M π donation. Close inspection of 1 and 2 revealed a large influence of the phosphane ligands on the stability of OsII thioether complexes. While 1 is reasonable stable, 2 readily gives 3 and ethylene via intramolecular ′S4′2- ligand reduction and OsIII→ OsIV oxidation. UV-Vis spectra of 3-5 indicate phosphane dissociation in solution leading to pentacoordinate [Os(PR3)(′S2′)2] complexes. This was confirmed by the synthesis of pentacoordinate [Os(PCy3)(′S2′)2] (7).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Liebigs Annalen 2000 (2000), S. 245-249 
    ISSN: 1434-193X
    Keywords: Cycloadditions ; Cage compounds ; Dimerizations ; Steric hindrance ; Photochemistry ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: ---On irradiation at λ ≥ 270 nm solutions of 4-aryl-1,4-dihydropyridines 1 yield cage dimers 2 as the main products beside small amounts of anti dimers 3. 1H-NMR data and X-ray crystal structure prove centrosymmetrical properties for both dimers with axially orientated 4-aryl substituents. Irradiation with filtered light (λ 〉 313 nm) leads to syn and anti dimers 4 and 3 in nearly equal yields. The poor yields of anti dimers 3 on irradiation with unfiltered light are demonstrated to result from a partial cleavage back to their monomeric starting materials 1.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1434-1948
    Keywords: Copper ; Oxygen ; Bioinorganic chemistry ; Oxidations ; Coordination chemistry ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Copper(I) and copper(II) complexes of the ligand N,N′-bis[2′(dimethylamino)ethyl]-N,N′-dimethylethane-1,2-diamine (Me6trien) were synthesized and structurally characterized. In the solid state the complex cation [Cu(Me6trien)]+ (1) adopts a distorted tetrahedral configuration. Crystallography, EPR measurements, and UV/Vis spectroscopy indicate that the analogous copper(II) complex [Cu(Me6trien)Cl]+ has a square pyramidal geometry in the solid state as well as in solution. The reaction of 1 with dioxygen was investigated in different solvents. No copper dioxygen intermediates could be detected spectrophotometrically during these reactions.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1434-1948
    Keywords: Ruthenium ; S ligands ; Hydrazine ; Diazene ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In the search for ruthenium complexes with sulfur-dominated coordination spheres that bind, activate, or stabilize nitrogenase relevant molecules, complexes containing the new and robust tetradentate ligand ‘tpS4’-H2 were synthesized. Treatment of [RuCl2(PPh3)3] with ‘tpS4’2- gives [Ru(PPh3)2(‘tpS4’)] (1), which contains two labile PPh3 ligands. The reaction of 1 with PEt3 or DMSO led to substitution of both PPh3 ligands, yielding [Ru(PEt3)2(‘tpS4’)] (2) and [Ru(DMSO)2(‘tpS4’)] (3), respectively. When treated with nitrogenous ligands, complex 1 lost only one PPh3 ligand to yield [Ru(L)(PPh3)(‘tpS4’)] complexes where L = py (7), NH3 (8), N2H4 (9), NH2NHMe (10), and CH3CN (12), all of which are labile. The labile acetonitrile complex [Ru(CH3CN)(PPh3)(‘tpS4’)] (12) proved to be particularly suited as a precursor for the syntheses of other [Ru(L)(PPh3)(‘tpS4’)] complexes. The 18 and 19 valence electron NO complexes [Ru(NO)(PPh3)(‘tpS4’)]BF4 (13) and [Ru(NO)(PPh3)(‘tpS4’)] (14), (NEt4)[Ru(N3)(PPh3)(‘tpS4’)] (15), [Ru(I)(PPh3)(‘tpS4’)] (16), and [Ru(N3)(PPh3)(‘tpS4’)] (17) were obtained starting from complex 12. The labile mononuclear hydrazine complex [Ru(N2H4)(PPh3)(‘tpS4’)] (9) gave the dinuclear complex [μ-N2H4{Ru(PPh3)(‘tpS4’)}2] (18) by dissociation of hydrazine. The dinuclear diazene complex [μ-N2H2{Ru(PPh3)(‘tpS4’)}2] (19) was obtained by oxidation of 9 and more readily from [Ru(CH3CN)(PPh3)(‘tpS4’)] (12) and N2H2, which was generated in situ from K2N2(CO2)2 and acetic acid. The molecular structures of 7, 13, 16, 18, and 19 were determined by X-ray structure analyses. The complexes 18 and 19 represent the first complexes containing the hydrazine/diazene couple, which enables us to compare both the bonding features and the formation of N-H···S bridges when hydrazine and diazene bind to transition metal sulfur sites.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...