Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 26 (1998), S. 25-40 
    ISSN: 1573-1405
    Keywords: medical imaging ; adaptive meshes ; non-rigid motion ; differential geometry ; finite element method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract We describe a new method for computing the displacement vector field in time sequences of 2D or 3D images (4D data). The method is energy-minimizing on the space of correspondence functions; the energy is split into two terms, with one term matching differential singularities in the images, and the other constraining the regularity of the field. In order to reduce the computational time of the motion estimation, we use an adaptive image mesh, the resolution of which depends on the value of the gradient intensity. We solve numerically the minimization problem with the finite element method which gives a continuous approximation of the solution. We present experimental results on synthetic data and on medical images and we show how to use these results for analyzing cardiac deformations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical imaging and vision 9 (1998), S. 49-67 
    ISSN: 1573-7683
    Keywords: geometric features ; transformation groups ; uniform distribution ; invariant measure ; invariant distance ; expected features ; mean features
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Complex geometric features such as oriented points, lines or 3D frames are increasingly used in image processing and computer vision. However, processing these geometric features is far more difficult than processing points, and a number of paradoxes can arise. We establish in this article the basic mathematical framework required to avoid them and analyze more specifically three basic problems: (1) what is a random distribution of features, (2) how to define a distance between features, (3) and what is the “mean feature” of a number of feature measurements? We insist on the importance of an invariance hypothesis for these definitions relative to a group of transformations that models the different possible data acquisitions. We develop general methods to solve these three problems and illustrate them with 3D frame features under rigid transformations. The first problem has a direct application in the computation of the prior probability of a false match in classical model-based object recognition algorithms. We also present experimental results of the two other problems for the statistical analysis of anatomical features automatically extracted from 24 three-dimensional images of a single patient's head. These experiments successfully confirm the importance of the rigorous requirements presented in this article.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...