Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0867
    Keywords: direct-seeding ; nitrogen fertilizer ; micrometeorology ; gas exchange ; irrigation ; volatilization ; denitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ammonia loss from urea applied to dry-seeded rice, determined using a micrometeorological technique, varied considerably depending on the time of application. Ammonia volatilization was negligible, before and after flooding, when urea was applied to the dry soil surface two days before permanent flood. Before flooding, the urea prills remained undissolved and urea hydrolysis could not proceed. Thus there was no source of fertilizerderived ammonia for volatilization to occur. Upon flooding, the urea prills were washed into cracks in the soil which subsequently closed. Therefore the movement of soluble nitrogen into the floodwater was prevented, and again there was no ammonia source for the volatilization process. When urea was broadcast into the floodwater a few days after permanent flood, ammonia losses were high and varied from 11–21% of the nitrogen applied. These losses were associated with high floodwater pHs and high wind speeds near the water surface. However, when urea was applied into the floodwater at panicle initiation, ammonia losses were low (3–8% of the applied nitrogen). At this stage of growth the plant canopy shaded the floodwater, inhibiting algal photosynthesis and consequent pH elevation, thus resulting in low ammonia gas concentrations at the floodwater surface. In addition, the plant canopy restricted air movement at the water surface, thereby reducing ammonia transport away from the air-water interface. These findings provide basic information required for improving current fertilizer management practices.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 16 (1988), S. 97-107 
    ISSN: 1573-0867
    Keywords: nitrogen loss ; volatilization ; micrometeorology ; denitrification ; gas exchange ; lowland rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper reports a study on the effects of water depth in modifying rates of ammonia emission and total nitrogen loss from flooded rice fields after fertilization with urea. Ammonia loss was determined by the mass balance micrometeorological method and total nitrogen loss by15N balance. Initially ammonia was lost at a faster rate from the shallow (0.05 m) than from the deep (0.14 m) floodwater; this was due to higher ammoniacal nitrogen concentrations and higher temperatures in the shallow water. Emission rates were more nearly comparable later in the experiment, but overall, 26% of the applied nitrogen was lost as ammonia from the shallow pond and only 18% from the deep pond. Even though changes in water depth markedly affected ammonia emission rates and the amounts of ammonia lost, they did not significantly affect total nitrogen loss. The results suggest that management practices based only on changes in water depth may not result in increased efficiency of fertilizer nitrogen for flooded rice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...