Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1536
    Keywords: Key words UHMWPE-LMWPE-CB composite ; electrical conductivity ; PTC effect ; gelation/crystallization ; kneading ; heat treatment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Composite materials based on ultrahigh-molecular-weight polyethylene (UHMWPE)–low- molecular-weight polyethylene (LMWPE) and carbon black (CB) particles were prepared by a gelation/crystallization process from dilute solution. The method was developed to obtain composite materials with an improved and reproducible positive temperature coefficient (PTC) effect. Drastic improvement of the PTC effect was achieved when specimens with a LMWPE/UHMWPE composition of 9/1 containing 13 wt% CB were treated at 170 °C without restraint before measurement. The maximum PTC intensity, defined as the ratio of the maximum resistivity to the resistivity at room temperature, was about 5 orders of magnitude, which equals that of the LMWPE-CB system prepared by a kneading method. Interestingly, electrical resistivity during the heating-cooling process showed good reproducibility in the temperature range 30–190 °C, but has never been reported before even for cross-linked LMWPE-CB compostie. Scanning electron micrographs revealed that CB particles were dispersed in the LMWPE matrix, but not on the UHMWPE fibrils. It turns out that the network structure of UHMWPE, with a very low melt index, plays an important role in removing the negative temperature coefficient effect usually observed for the LMWPE-CB system and in ensuring the quality and the reproducibility of the PTC effect.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...