Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Key words Impaired glucose tolerance ; insulin sensitivity ; hepatic glucose output ; insulin secretion ; labelled infusion technique.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Recent evidence suggests that the postprandial hyperglycaemia in impaired glucose tolerance is primarily due to impaired suppression of basal hepatic glucose output. This in turn appears to be secondary to decreased first phase insulin secretion, although decreased hepatic insulin sensitivity, which is a feature of non-insulin-dependent diabetes mellitus, might also play a role. Eight mildly overweight subjects with impaired glucose tolerance and eight closely matched control subjects with normal glucose tolerance underwent an intravenous glucose tolerance test to assess first phase insulin secretion. Insulin sensitivity was examined by a 150-min hyperinsulinaemic-euglycaemic clamp. Somatostatin was infused from 150 min to suppress endogenous insulin secretion, and glucagon and insulin were replaced by constant infusion. Glucose with added dideuterated glucose (labelled infusion technique) was infused to maintain euglycaemia. First phase insulin secretion (Δ 0–10 min insulin area 7 Δ 0–10 min glucose area) was significantly decreased in the subjects with impaired glucose tolerance (median [range]: 1.2 [0.2–19.4] vs 9.1 [2.6–14.5] mU · mmol−1; p 〈 0.01). During the clamp, circulating insulin (93 ± 8 [mean ± SEM] and 81 ± 10 mU · l−1) and glucagon (54 ± 4 and 44 ± 6 ng · l−1) levels were comparable. Total glucose disposal was decreased in subjects with impaired glucose tolerance (2.78 ± 0.27 vs 4.47 ± 0.53 mg · kg−1· min−1; p 〈 0.02), and was primarily due to decreased non-oxidative glucose disposal. However, hepatic glucose output rates were comparable during the clamp (0.38 ± 0.10 and 0.30 ± 0.18 mg · kg−1· min−1). Therefore, the main defects in subjects with impaired glucose tolerance are decreased first phase insulin secretion and peripheral non-oxidative glucose disposal, but hepatic glucose output shows normal responsiveness to insulin. [Diabetologia (1995) 38: 699–704]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Keywords Prediabetes ; physiological approach ; 24-h profile ; glucose ; insulin ; insulin secretion ; proinsulin ; non-esterified fatty acids ; gut incretin hormones ; intermediary metabolites.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. Insulin resistance is a common feature in relatives of patients with Type II (non-insulin-dependent) diabetes mellitus and abnormalities in beta-cell function can also exist. Insight into non-fasting carbohydrate metabolism in these potentially prediabetic subjects relies almost exclusively on studies in which glucose is infused or ingested or both. We aimed to characterize insulin secretion and aspects of hormonal and metabolic patterns in relatives using a physiological approach. Methods. We examined profiles of insulin, C peptide, proinsulin, gut incretin hormones and fuel substrates in 26 glucose tolerant but insulin resistant (clamp) relatives and 17 control subjects during a 24-hour period including three meals. Results. During the day plasma glucose was slightly raised in relatives (p 〈 0.05). Overall insulin secretion calculated on the basis of C peptide kinetics were increased in relatives (p 〈 0.0005) whereas incremental insulin secretion after all three meals were similar. Peak incremental insulin secretion tended, however, to be reduced in relatives (p 〈 0.10). Despite considerably increased insulin concentrations in relatives (70 %, p 〈 0.001), serum NEFA did not differ. Postprandial proinsulin concentrations (p 〈 0.05), but not proinsulin:insulin ratios, were increased in relatives. After meals concentrations of glucose-dependent-insulinotropic polypeptide (p 〈 0.05) were increased in relatives. Glucagon-like peptide-1 concentrations were similar. Conclusion/interpretation. Several hormonal and metabolic aberrations are present in healthy relatives of Type II diabetic patients during conditions that simulate daily living. Increased concentrations of glucose-dependent-insulinotropic polypeptide could indicate a beta-cell receptor defect for glucose-dependent-insulinotropic polypeptide in the prediabetic stage of Type II diabetes. Incremental insulin secretion after mixed meals appear normal in relatives, although a trend towards diminished peak values possibly signifies early beta-cell dysfunction. [Diabetologia (1999) 42: 1314–1323]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Impaired glucose tolerance ; insulin sensitivity ; hepatic glucose output ; insulin secretion ; labelled infusion technique
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Recent evidence suggests that the post-prandial hyperglycaemia in impaired glucose tolerance is primarily due to impaired suppression of basal hepatic glucose output. This in turn appears to be secondary to decreased first phase insulin secretion, although decreased hepatic insulin sensitivity, which is a feature of non-insulin-dependent diabetes mellitus, might also play a role. Eight mildly overweight subjects with impaired glucose tolerance and eight closely matched control subjects with normal glucose tolerance underwent an intravenous glucose tolerance test to assess first phase insulin secretion. Insulin sensitivity was examined by a 150-min hyperinsulinaemic-euglycaemic clamp. Somatostatin was infused from 150 min to suppress endogenous insulin secretion, and glucagon and insulin were replaced by constant infusion. Glucose with added dideuterated glucose (labelled infusion technique) was infused to maintain euglycaemia. First phase insulin secretion (Δ 0–10 min insulin area ÷Δ 0–10 min glucose area) was significantly decreased in the subjects with impaired glucose tolerance (median [range]: 1.2 [0.2–19.4] vs 9.1 [2.6–14.5] mU·mmol−1; p〈0.01). During the clamp, circulating insulin (93±8 [mean±SEM] and 81±10 mU·l−1) and glucagon (54±4 and 44±6 ng·l−1) levels were comparable. Total glucose disposal was decreased in subjects with impaired glucose tolerance (2.78±0.27 vs 4.47±0.53 mg·kg−1·min−1; p〈0.02), and was primarily due to decreased non-oxidative glucose disposal. However, hepatic glucose output rates were comparable during the clamp (0.38±0.10 and 0.30±0.18 mg·kg−1·min−1). Therefore, the main defects in subjects with impaired glucose tolerance are decreased first phase insulin secretion and peripheral non-oxidative glucose disposal, but hepatic glucose output shows normal responsiveness to insulin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0428
    Keywords: Keywords C-peptide ; proinsulin ; insulin ; insulin secretion ; insulin resistance ; insulin clearance ; families ; adiposity ; glucose intolerance.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Non-diabetic first degree relatives of non-insulin-dependent diabetic (NIDDM) families are at increased risk of developing diabetes mellitus, and have been studied to identify early metabolic abnormalities. Hormone concentrations measured by specific enzyme immunoassays were assessed in non-diabetic relatives of North European extraction, and control subjects with no family history of diabetes were matched for age, sex and ethnicity. A 75-g oral glucose tolerance test was conducted and those with newly diagnosed NIDDM were excluded. Basal insulin resistance was determined by homeostasis model assessment (HOMA), and hepatic insulin clearance by C-peptide:insulin molar ratio. Relatives (n = 150) were heavier (BMI: p 〈 0.0001) than the control subjects (n = 152), and had an increased prevalence of impaired glucose tolerance (15 vs 3 %, p 〈 0.01). The relatives had increased fasting proinsulin levels and decreased C-peptide levels following the glucose load, while insulin levels were increased at all time points. To examine whether the differences in hormone levels were secondary to the differences in glucose tolerance and adiposity, we studied 100 normal glucose tolerant relatives and control subjects pair-matched for age, sex, waist-hip ratio and BMI. The differences in proinsulin levels were no longer apparent. However, the relatives remained more insulin resistant, and had decreased C-peptide levels and C-peptide:insulin ratios at all time points. In conclusion, we have identified several metabolic abnormalities in the normal glucose tolerant relatives, and propose that the decreased hepatic insulin clearance helps to maintain normoglycaemia in the face of combined insulin resistance and decreased insulin secretion. [Diabetologie (1997) 40: 1185–1190]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0428
    Keywords: Keywords Birth weight ; ponderal index ; glucose ; insulin ; children.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In adults low birthweight and thinness at birth are associated with increased risk of glucose intolerance and non-insulin-dependent diabetes mellitus. We have examined the relations between size at birth (birthweight, thinness at birth) and levels of plasma glucose and serum insulin in children, and compared them with the effects of childhood size. We performed a school-based survey of 10–11-year-old British children (response rate 64 %) with measurements made after an overnight fast. One group of children (n = 591) was studied fasting while the other (n = 547) was studied 30 min after a standard oral glucose load (1.75 g/kg). Serum insulin was measured by a highly specific ELISA method. Birthweight was assessed by maternal recall and thinness at birth using birth records. Neither fasting nor post-load glucose levels showed any consistent relationship with birthweight or ponderal index at birth. After adjustment for childhood height and ponderal index, both fasting and post-load insulin levels fell with increasing birthweight. For each kg increase in birthweight, fasting insulin fell by 16.9 % (95 % confidence limits 7.1–25.8 %, p = 0.001) and post-load insulin by 11.6 % (95 % confidence limits 3.5–19.1 %, p = 0.007). However, the proportional change in insulin level for a 1 SD increase in childhood ponderal index was much greater than that for birthweight (27.2 % and − 8.8 %, respectively, for fasting insulin). We conclude that low birthweight is not related to glucose intolerance at 10–11 years, but may be related to the early development of insulin resistance. However, in contemporary children obesity is a stronger determinant of insulin level and insulin resistance than size at birth. [Diabetologia (1997) 40: 319–326]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...